Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311315957> ?p ?o ?g. }
- W4311315957 endingPage "A49" @default.
- W4311315957 startingPage "A49" @default.
- W4311315957 abstract "Optical access networks are envisioned to become increasingly complex as they support more and more diverse and immersive services, each with a different capacity, latency, and reliability need. While machine learning has been touted as a silver bullet that will intelligently manage network operations and resources to meet these demands, as it had been anticipated for core and metro networks, there exist various challenges that need to be addressed to progress machine learning models from research to production. In this tutorial, we first aim to motivate the continued push to advance optical access networks and rationalize the use of machine learning in these networks. We then highlight the challenges that are especially amplified due to the traffic dynamicity and heterogeneity, data scarcity, and computation-resource constraints of optical access networks. We discuss emerging machine learning approaches that are being explored to address these challenges. Finally, we consider a fast and self-adaptive machine learning enhanced dynamic bandwidth allocation scheme in an illustrative future use case of supporting immersive human-to-machine communications over the mobile fronthaul of next-generation mobile networks." @default.
- W4311315957 created "2022-12-25" @default.
- W4311315957 creator A5023984357 @default.
- W4311315957 creator A5044922102 @default.
- W4311315957 creator A5068401967 @default.
- W4311315957 date "2023-01-09" @default.
- W4311315957 modified "2023-10-16" @default.
- W4311315957 title "Machine learning enhanced next-generation optical access networks—challenges and emerging solutions [Invited Tutorial]" @default.
- W4311315957 cites W2004316044 @default.
- W4311315957 cites W2027225643 @default.
- W4311315957 cites W2122838776 @default.
- W4311315957 cites W2133416044 @default.
- W4311315957 cites W2165698076 @default.
- W4311315957 cites W2282821441 @default.
- W4311315957 cites W2588150078 @default.
- W4311315957 cites W2591909298 @default.
- W4311315957 cites W2776393547 @default.
- W4311315957 cites W2798466203 @default.
- W4311315957 cites W2885033069 @default.
- W4311315957 cites W2888353605 @default.
- W4311315957 cites W2891503716 @default.
- W4311315957 cites W2895440380 @default.
- W4311315957 cites W2912267671 @default.
- W4311315957 cites W2922338397 @default.
- W4311315957 cites W2950544300 @default.
- W4311315957 cites W2963047971 @default.
- W4311315957 cites W2963809228 @default.
- W4311315957 cites W2964101383 @default.
- W4311315957 cites W2987109489 @default.
- W4311315957 cites W2995523160 @default.
- W4311315957 cites W2999108945 @default.
- W4311315957 cites W3005919018 @default.
- W4311315957 cites W3009963993 @default.
- W4311315957 cites W3013744373 @default.
- W4311315957 cites W3030364939 @default.
- W4311315957 cites W3041670800 @default.
- W4311315957 cites W3043160416 @default.
- W4311315957 cites W3087920449 @default.
- W4311315957 cites W3089215347 @default.
- W4311315957 cites W3091327592 @default.
- W4311315957 cites W3103211661 @default.
- W4311315957 cites W3110461717 @default.
- W4311315957 cites W3111003944 @default.
- W4311315957 cites W3113766111 @default.
- W4311315957 cites W3119734556 @default.
- W4311315957 cites W3133212496 @default.
- W4311315957 cites W3135539146 @default.
- W4311315957 cites W3164036272 @default.
- W4311315957 cites W3174262138 @default.
- W4311315957 cites W3176062169 @default.
- W4311315957 cites W3198350258 @default.
- W4311315957 cites W3202089201 @default.
- W4311315957 cites W3209793655 @default.
- W4311315957 cites W3212741418 @default.
- W4311315957 cites W3216126661 @default.
- W4311315957 cites W4200357297 @default.
- W4311315957 cites W4200464007 @default.
- W4311315957 cites W4206390255 @default.
- W4311315957 cites W4210429318 @default.
- W4311315957 cites W4221166753 @default.
- W4311315957 cites W4281572064 @default.
- W4311315957 cites W4281734026 @default.
- W4311315957 cites W4281758226 @default.
- W4311315957 doi "https://doi.org/10.1364/jocn.470902" @default.
- W4311315957 hasPublicationYear "2023" @default.
- W4311315957 type Work @default.
- W4311315957 citedByCount "5" @default.
- W4311315957 countsByYear W43113159572023 @default.
- W4311315957 crossrefType "journal-article" @default.
- W4311315957 hasAuthorship W4311315957A5023984357 @default.
- W4311315957 hasAuthorship W4311315957A5044922102 @default.
- W4311315957 hasAuthorship W4311315957A5068401967 @default.
- W4311315957 hasConcept C109747225 @default.
- W4311315957 hasConcept C120314980 @default.
- W4311315957 hasConcept C154945302 @default.
- W4311315957 hasConcept C162324750 @default.
- W4311315957 hasConcept C175444787 @default.
- W4311315957 hasConcept C31258907 @default.
- W4311315957 hasConcept C41008148 @default.
- W4311315957 hasConcept C62793504 @default.
- W4311315957 hasConceptScore W4311315957C109747225 @default.
- W4311315957 hasConceptScore W4311315957C120314980 @default.
- W4311315957 hasConceptScore W4311315957C154945302 @default.
- W4311315957 hasConceptScore W4311315957C162324750 @default.
- W4311315957 hasConceptScore W4311315957C175444787 @default.
- W4311315957 hasConceptScore W4311315957C31258907 @default.
- W4311315957 hasConceptScore W4311315957C41008148 @default.
- W4311315957 hasConceptScore W4311315957C62793504 @default.
- W4311315957 hasIssue "2" @default.
- W4311315957 hasLocation W43113159571 @default.
- W4311315957 hasOpenAccess W4311315957 @default.
- W4311315957 hasPrimaryLocation W43113159571 @default.
- W4311315957 hasRelatedWork W1485627940 @default.
- W4311315957 hasRelatedWork W1596201972 @default.
- W4311315957 hasRelatedWork W1598943142 @default.
- W4311315957 hasRelatedWork W1986253068 @default.
- W4311315957 hasRelatedWork W2130966263 @default.
- W4311315957 hasRelatedWork W2152433827 @default.