Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311328151> ?p ?o ?g. }
- W4311328151 endingPage "e0278874" @default.
- W4311328151 startingPage "e0278874" @default.
- W4311328151 abstract "Hypoxic ischemic encephalopathy (HIE) is a major global cause of neonatal death and lifelong disability. Large animal translational studies of hypoxic ischemic brain injury, such as those conducted in fetal sheep, have and continue to play a key role in furthering our understanding of the cellular and molecular mechanisms of injury and developing new treatment strategies for clinical translation. At present, the quantification of neurons in histological images consists of slow, manually intensive morphological assessment, requiring many repeats by an expert, which can prove to be time-consuming and prone to human error. Hence, there is an urgent need to automate the neuron classification and quantification process. In this article, we present a ’Gradient Direction, Grey level Co-occurrence Matrix’ (GD-GLCM) image training method which outperforms and simplifies the standard training methodology using texture analysis to cell-classification. This is achieved by determining the Grey level Co-occurrence Matrix of the gradient direction of a cell image followed by direct passing to a classifier in the form of a Multilayer Perceptron (MLP). Hence, avoiding all texture feature computation steps. The proposed MLP is trained on both healthy and dying neurons that are manually identified by an expert and validated on unseen hypoxic-ischemic brain slice images from the fetal sheep in utero model. We compared the performance of our classifier using the gradient magnitude dataset as well as the gradient direction dataset. We also compare the performance of a perceptron, a 1-layer MLP, and a 2-layer MLP to each other. We demonstrate here a way of accurately identifying both healthy and dying cortical neurons obtained from brain slice images of the fetal sheep model under global hypoxia to high precision by identifying the most minimised MLP architecture, minimised input space (GLCM size) and minimised training data (GLCM representations) to achieve the highest performance over the standard methodology." @default.
- W4311328151 created "2022-12-25" @default.
- W4311328151 creator A5003490036 @default.
- W4311328151 creator A5039019537 @default.
- W4311328151 creator A5040544403 @default.
- W4311328151 creator A5057745262 @default.
- W4311328151 date "2022-12-13" @default.
- W4311328151 modified "2023-10-17" @default.
- W4311328151 title "Multi-layer perceptron classification & quantification of neuronal survival in hypoxic-ischemic brain image slices using a novel gradient direction, grey level co-occurrence matrix image training" @default.
- W4311328151 cites W1830337612 @default.
- W4311328151 cites W1917732024 @default.
- W4311328151 cites W1981276673 @default.
- W4311328151 cites W1989190357 @default.
- W4311328151 cites W1995150355 @default.
- W4311328151 cites W2017140936 @default.
- W4311328151 cites W2030253121 @default.
- W4311328151 cites W2042327336 @default.
- W4311328151 cites W2044029912 @default.
- W4311328151 cites W2044465660 @default.
- W4311328151 cites W2055004294 @default.
- W4311328151 cites W2060887306 @default.
- W4311328151 cites W2065213345 @default.
- W4311328151 cites W2074143586 @default.
- W4311328151 cites W2084385260 @default.
- W4311328151 cites W2089648703 @default.
- W4311328151 cites W2089720976 @default.
- W4311328151 cites W2098683915 @default.
- W4311328151 cites W2101927907 @default.
- W4311328151 cites W2106994851 @default.
- W4311328151 cites W2112941339 @default.
- W4311328151 cites W2116528865 @default.
- W4311328151 cites W2117271072 @default.
- W4311328151 cites W2119440128 @default.
- W4311328151 cites W2121087310 @default.
- W4311328151 cites W2127007253 @default.
- W4311328151 cites W2132539465 @default.
- W4311328151 cites W2134916573 @default.
- W4311328151 cites W2135122869 @default.
- W4311328151 cites W2135974117 @default.
- W4311328151 cites W2149834450 @default.
- W4311328151 cites W2153229538 @default.
- W4311328151 cites W2154433919 @default.
- W4311328151 cites W2298071216 @default.
- W4311328151 cites W2323280749 @default.
- W4311328151 cites W2418726912 @default.
- W4311328151 cites W2419020529 @default.
- W4311328151 cites W2613618132 @default.
- W4311328151 cites W2751723768 @default.
- W4311328151 cites W2782920681 @default.
- W4311328151 cites W2790071740 @default.
- W4311328151 cites W2886139975 @default.
- W4311328151 cites W2894776090 @default.
- W4311328151 cites W2899740939 @default.
- W4311328151 cites W2902620820 @default.
- W4311328151 cites W2903200657 @default.
- W4311328151 cites W2903306729 @default.
- W4311328151 cites W2921843266 @default.
- W4311328151 cites W2947810057 @default.
- W4311328151 cites W2972477350 @default.
- W4311328151 cites W2972571948 @default.
- W4311328151 cites W2977829901 @default.
- W4311328151 cites W2979908934 @default.
- W4311328151 cites W2996024408 @default.
- W4311328151 cites W2997499155 @default.
- W4311328151 cites W2999519521 @default.
- W4311328151 cites W3027179798 @default.
- W4311328151 cites W3028014057 @default.
- W4311328151 cites W3042104961 @default.
- W4311328151 cites W3080810277 @default.
- W4311328151 cites W3089231140 @default.
- W4311328151 cites W3120608793 @default.
- W4311328151 cites W3188618972 @default.
- W4311328151 cites W864029783 @default.
- W4311328151 cites W1999672363 @default.
- W4311328151 cites W2170590026 @default.
- W4311328151 doi "https://doi.org/10.1371/journal.pone.0278874" @default.
- W4311328151 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36512546" @default.
- W4311328151 hasPublicationYear "2022" @default.
- W4311328151 type Work @default.
- W4311328151 citedByCount "0" @default.
- W4311328151 crossrefType "journal-article" @default.
- W4311328151 hasAuthorship W4311328151A5003490036 @default.
- W4311328151 hasAuthorship W4311328151A5039019537 @default.
- W4311328151 hasAuthorship W4311328151A5040544403 @default.
- W4311328151 hasAuthorship W4311328151A5057745262 @default.
- W4311328151 hasBestOaLocation W43113281511 @default.
- W4311328151 hasConcept C115961682 @default.
- W4311328151 hasConcept C117479156 @default.
- W4311328151 hasConcept C124504099 @default.
- W4311328151 hasConcept C153180895 @default.
- W4311328151 hasConcept C154945302 @default.
- W4311328151 hasConcept C179717631 @default.
- W4311328151 hasConcept C41008148 @default.
- W4311328151 hasConcept C50644808 @default.
- W4311328151 hasConcept C60908668 @default.
- W4311328151 hasConcept C63099799 @default.
- W4311328151 hasConcept C75294576 @default.
- W4311328151 hasConcept C89600930 @default.