Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311330992> ?p ?o ?g. }
- W4311330992 abstract "The difference between the chronological and biological brain age, called the brain age gap (BAG), has been identified as a promising biomarker to detect deviation from normal brain aging and to indicate the presence of neurodegenerative diseases. Moreover, the BAG has been shown to encode biological information about general health, which can be measured through cardiovascular risk factors. Current approaches for biological brain age estimation, and therefore BAG estimation, either depend on hand-crafted, morphological measurements extracted from brain magnetic resonance imaging (MRI) or on direct analysis of brain MRI images. The former can be processed with traditional machine learning models while the latter is commonly processed with convolutional neural networks (CNNs). Using a multimodal setting, this study aims to compare both approaches in terms of biological brain age prediction accuracy and biological information captured in the BAG.T1-weighted MRI, containing brain tissue information, and magnetic resonance angiography (MRA), providing information about brain arteries, from 1,658 predominantly healthy adults were used. The volumes, surface areas, and cortical thickness of brain structures were extracted from the T1-weighted MRI data, while artery density and thickness within the major blood flow territories and thickness of the major arteries were extracted from MRA data. Independent multilayer perceptron and CNN models were trained to estimate the brain age from the hand-crafted features and image data, respectively. Next, both approaches were fused to assess the benefits of combining image data and hand-crafted features for brain age prediction.The combined model achieved a mean absolute error of 4 years between the chronological and predicted biological brain age. Among the independent models, the lowest mean absolute error was observed for the CNN using T1-weighted MRI data (4.2 years). When evaluating the BAGs obtained using the different approaches and imaging modalities, diverging associations between cardiovascular risk factors were found. For example, BAGs obtained from the CNN models showed an association with systolic blood pressure, while BAGs obtained from hand-crafted measurements showed greater associations with obesity markers.In conclusion, the use of more diverse sources of data can improve brain age estimation modeling and capture more diverse biological deviations from normal aging." @default.
- W4311330992 created "2022-12-25" @default.
- W4311330992 creator A5025772545 @default.
- W4311330992 creator A5026674091 @default.
- W4311330992 creator A5032673375 @default.
- W4311330992 creator A5049542143 @default.
- W4311330992 creator A5051753610 @default.
- W4311330992 date "2022-12-14" @default.
- W4311330992 modified "2023-09-25" @default.
- W4311330992 title "Multimodal brain age prediction fusing morphometric and imaging data and association with cardiovascular risk factors" @default.
- W4311330992 cites W1973965874 @default.
- W4311330992 cites W2004293194 @default.
- W4311330992 cites W2006594119 @default.
- W4311330992 cites W2031317307 @default.
- W4311330992 cites W2035514833 @default.
- W4311330992 cites W2047641191 @default.
- W4311330992 cites W2048733914 @default.
- W4311330992 cites W2069270259 @default.
- W4311330992 cites W2082704080 @default.
- W4311330992 cites W2108103428 @default.
- W4311330992 cites W2110065044 @default.
- W4311330992 cites W2117340355 @default.
- W4311330992 cites W2124648012 @default.
- W4311330992 cites W2131014997 @default.
- W4311330992 cites W2143895814 @default.
- W4311330992 cites W2155463946 @default.
- W4311330992 cites W2276104008 @default.
- W4311330992 cites W2345612204 @default.
- W4311330992 cites W2547929024 @default.
- W4311330992 cites W2579617530 @default.
- W4311330992 cites W2614054318 @default.
- W4311330992 cites W2734680224 @default.
- W4311330992 cites W2818723673 @default.
- W4311330992 cites W2891919070 @default.
- W4311330992 cites W2907477685 @default.
- W4311330992 cites W2929665219 @default.
- W4311330992 cites W2937999720 @default.
- W4311330992 cites W2953966765 @default.
- W4311330992 cites W2968446587 @default.
- W4311330992 cites W2990366895 @default.
- W4311330992 cites W2995959638 @default.
- W4311330992 cites W2996201555 @default.
- W4311330992 cites W3007648700 @default.
- W4311330992 cites W3016088911 @default.
- W4311330992 cites W3017066732 @default.
- W4311330992 cites W3024808442 @default.
- W4311330992 cites W3033878890 @default.
- W4311330992 cites W3037286432 @default.
- W4311330992 cites W3039902443 @default.
- W4311330992 cites W3061342290 @default.
- W4311330992 cites W3089258874 @default.
- W4311330992 cites W3091943846 @default.
- W4311330992 cites W3092783643 @default.
- W4311330992 cites W3094108931 @default.
- W4311330992 cites W3111518260 @default.
- W4311330992 cites W3121408759 @default.
- W4311330992 cites W3135969841 @default.
- W4311330992 cites W3160112818 @default.
- W4311330992 cites W3169941865 @default.
- W4311330992 cites W3202476286 @default.
- W4311330992 cites W3204271386 @default.
- W4311330992 cites W4210818810 @default.
- W4311330992 cites W4210858825 @default.
- W4311330992 cites W4220800641 @default.
- W4311330992 cites W4220833183 @default.
- W4311330992 cites W4292553565 @default.
- W4311330992 doi "https://doi.org/10.3389/fneur.2022.979774" @default.
- W4311330992 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36588902" @default.
- W4311330992 hasPublicationYear "2022" @default.
- W4311330992 type Work @default.
- W4311330992 citedByCount "1" @default.
- W4311330992 countsByYear W43113309922023 @default.
- W4311330992 crossrefType "journal-article" @default.
- W4311330992 hasAuthorship W4311330992A5025772545 @default.
- W4311330992 hasAuthorship W4311330992A5026674091 @default.
- W4311330992 hasAuthorship W4311330992A5032673375 @default.
- W4311330992 hasAuthorship W4311330992A5049542143 @default.
- W4311330992 hasAuthorship W4311330992A5051753610 @default.
- W4311330992 hasBestOaLocation W43113309921 @default.
- W4311330992 hasConcept C120843803 @default.
- W4311330992 hasConcept C126838900 @default.
- W4311330992 hasConcept C143409427 @default.
- W4311330992 hasConcept C153180895 @default.
- W4311330992 hasConcept C154945302 @default.
- W4311330992 hasConcept C15744967 @default.
- W4311330992 hasConcept C169760540 @default.
- W4311330992 hasConcept C2777670902 @default.
- W4311330992 hasConcept C2779226451 @default.
- W4311330992 hasConcept C41008148 @default.
- W4311330992 hasConcept C522805319 @default.
- W4311330992 hasConcept C58693492 @default.
- W4311330992 hasConcept C71924100 @default.
- W4311330992 hasConcept C81363708 @default.
- W4311330992 hasConceptScore W4311330992C120843803 @default.
- W4311330992 hasConceptScore W4311330992C126838900 @default.
- W4311330992 hasConceptScore W4311330992C143409427 @default.
- W4311330992 hasConceptScore W4311330992C153180895 @default.
- W4311330992 hasConceptScore W4311330992C154945302 @default.
- W4311330992 hasConceptScore W4311330992C15744967 @default.
- W4311330992 hasConceptScore W4311330992C169760540 @default.