Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311341446> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4311341446 endingPage "100645" @default.
- W4311341446 startingPage "100645" @default.
- W4311341446 abstract "Efficiently executing image categorization with high spatial quality imagery from remote sensing can bring great benefits to scene classification. Effective feature representation is critical in the development of high-performance scene categorization techniques because sensor data processing is tough. Remote sensing as well as deep learning abilities have made it easier to extract spatiotemporal information for classification. Furthermore, other scientific disciplines, together with remote sensing, have made significant advances in image categorization by convolutional neural networks (CNNs), and transfer learning is being combined. Image categorization in this article was performed to enrich the accuracy of Scene classification using Transfer learning utilizing pre-trained Alex Net, and Visual Geometry Group (VGG) networks and compared with feature extraction methods. First, features were retrieved from the pre-trained network's second fully-connected layer and employed in SVM classification. Second, substituting the last layers of pre-trained networks with the notion of transfer learning was used to categorize new datasets. It is executed on the UCM Dataset as well as the SIRI-WHU Dataset. The proposed methodologies produced improved accuracy of 95% for UCM, 93% for SIRI-WHU Datasets." @default.
- W4311341446 created "2022-12-25" @default.
- W4311341446 creator A5014503887 @default.
- W4311341446 creator A5029459665 @default.
- W4311341446 creator A5038461780 @default.
- W4311341446 date "2023-02-01" @default.
- W4311341446 modified "2023-10-14" @default.
- W4311341446 title "Remote sensing image scene classification by transfer learning to augment the accuracy" @default.
- W4311341446 cites W1958291604 @default.
- W4311341446 cites W2002281921 @default.
- W4311341446 cites W2098676252 @default.
- W4311341446 cites W2135011950 @default.
- W4311341446 cites W2626107033 @default.
- W4311341446 cites W2792857687 @default.
- W4311341446 cites W2897401870 @default.
- W4311341446 cites W2914311543 @default.
- W4311341446 cites W2973777195 @default.
- W4311341446 cites W3022140654 @default.
- W4311341446 cites W3047317383 @default.
- W4311341446 cites W3129768146 @default.
- W4311341446 doi "https://doi.org/10.1016/j.measen.2022.100645" @default.
- W4311341446 hasPublicationYear "2023" @default.
- W4311341446 type Work @default.
- W4311341446 citedByCount "2" @default.
- W4311341446 countsByYear W43113414462023 @default.
- W4311341446 crossrefType "journal-article" @default.
- W4311341446 hasAuthorship W4311341446A5014503887 @default.
- W4311341446 hasAuthorship W4311341446A5029459665 @default.
- W4311341446 hasAuthorship W4311341446A5038461780 @default.
- W4311341446 hasBestOaLocation W43113414461 @default.
- W4311341446 hasConcept C108583219 @default.
- W4311341446 hasConcept C115961682 @default.
- W4311341446 hasConcept C119857082 @default.
- W4311341446 hasConcept C12267149 @default.
- W4311341446 hasConcept C138885662 @default.
- W4311341446 hasConcept C150899416 @default.
- W4311341446 hasConcept C153180895 @default.
- W4311341446 hasConcept C154945302 @default.
- W4311341446 hasConcept C205649164 @default.
- W4311341446 hasConcept C2776401178 @default.
- W4311341446 hasConcept C41008148 @default.
- W4311341446 hasConcept C41895202 @default.
- W4311341446 hasConcept C52622490 @default.
- W4311341446 hasConcept C62649853 @default.
- W4311341446 hasConcept C75294576 @default.
- W4311341446 hasConcept C81363708 @default.
- W4311341446 hasConcept C94124525 @default.
- W4311341446 hasConceptScore W4311341446C108583219 @default.
- W4311341446 hasConceptScore W4311341446C115961682 @default.
- W4311341446 hasConceptScore W4311341446C119857082 @default.
- W4311341446 hasConceptScore W4311341446C12267149 @default.
- W4311341446 hasConceptScore W4311341446C138885662 @default.
- W4311341446 hasConceptScore W4311341446C150899416 @default.
- W4311341446 hasConceptScore W4311341446C153180895 @default.
- W4311341446 hasConceptScore W4311341446C154945302 @default.
- W4311341446 hasConceptScore W4311341446C205649164 @default.
- W4311341446 hasConceptScore W4311341446C2776401178 @default.
- W4311341446 hasConceptScore W4311341446C41008148 @default.
- W4311341446 hasConceptScore W4311341446C41895202 @default.
- W4311341446 hasConceptScore W4311341446C52622490 @default.
- W4311341446 hasConceptScore W4311341446C62649853 @default.
- W4311341446 hasConceptScore W4311341446C75294576 @default.
- W4311341446 hasConceptScore W4311341446C81363708 @default.
- W4311341446 hasConceptScore W4311341446C94124525 @default.
- W4311341446 hasLocation W43113414461 @default.
- W4311341446 hasOpenAccess W4311341446 @default.
- W4311341446 hasPrimaryLocation W43113414461 @default.
- W4311341446 hasRelatedWork W2279398222 @default.
- W4311341446 hasRelatedWork W2996856019 @default.
- W4311341446 hasRelatedWork W3012393889 @default.
- W4311341446 hasRelatedWork W3018421652 @default.
- W4311341446 hasRelatedWork W3091976719 @default.
- W4311341446 hasRelatedWork W3156786002 @default.
- W4311341446 hasRelatedWork W3192840557 @default.
- W4311341446 hasRelatedWork W4220996320 @default.
- W4311341446 hasRelatedWork W4299822940 @default.
- W4311341446 hasRelatedWork W4312200629 @default.
- W4311341446 hasVolume "25" @default.
- W4311341446 isParatext "false" @default.
- W4311341446 isRetracted "false" @default.
- W4311341446 workType "article" @default.