Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311341922> ?p ?o ?g. }
- W4311341922 endingPage "120870" @default.
- W4311341922 startingPage "120870" @default.
- W4311341922 abstract "Water quality assessment is critical to better recognise the importance of water in human society. In this study, a new framework to predict long-term water quality is proposed by using Bayesian-optimised machine learning methods and key pollution indicators collected from monitoring stations in the Pearl River Estuary, Guangdong, China. The optimised stacked generalisation (SG-op) model achieved the best performance with the highest accuracy (0.992) and Kappa coefficient (0.987). Feature importance of the prediction model was consistent with key pollution indicators. The Spearman rank correlation coefficient was used to determine the significance level of the variation trends of different pollution indicators. The results show that the total phosphorus (TOP), dissolved oxygen (DO), chemical oxygen demand (COD), and petroleum (PET) among the key pollution indicators were on an upward trend in the study area. This framework can be applied to efficiently predict future water quality and to provide technical support for emergency pollution control." @default.
- W4311341922 created "2022-12-25" @default.
- W4311341922 creator A5046193097 @default.
- W4311341922 creator A5056380462 @default.
- W4311341922 creator A5079466608 @default.
- W4311341922 date "2023-02-01" @default.
- W4311341922 modified "2023-10-18" @default.
- W4311341922 title "Prediction of long-term water quality using machine learning enhanced by Bayesian optimisation" @default.
- W4311341922 cites W1980167002 @default.
- W4311341922 cites W2072128306 @default.
- W4311341922 cites W2151529295 @default.
- W4311341922 cites W2737195924 @default.
- W4311341922 cites W2789738719 @default.
- W4311341922 cites W2793206677 @default.
- W4311341922 cites W2800133189 @default.
- W4311341922 cites W2810987240 @default.
- W4311341922 cites W2901944617 @default.
- W4311341922 cites W2944550430 @default.
- W4311341922 cites W3045443099 @default.
- W4311341922 cites W3049235151 @default.
- W4311341922 cites W3083502164 @default.
- W4311341922 cites W3095609685 @default.
- W4311341922 cites W3148505280 @default.
- W4311341922 cites W3163436213 @default.
- W4311341922 cites W3165480456 @default.
- W4311341922 cites W3174083056 @default.
- W4311341922 cites W3175134873 @default.
- W4311341922 cites W3190283086 @default.
- W4311341922 cites W3203687191 @default.
- W4311341922 cites W4200014974 @default.
- W4311341922 doi "https://doi.org/10.1016/j.envpol.2022.120870" @default.
- W4311341922 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36526051" @default.
- W4311341922 hasPublicationYear "2023" @default.
- W4311341922 type Work @default.
- W4311341922 citedByCount "4" @default.
- W4311341922 countsByYear W43113419222023 @default.
- W4311341922 crossrefType "journal-article" @default.
- W4311341922 hasAuthorship W4311341922A5046193097 @default.
- W4311341922 hasAuthorship W4311341922A5056380462 @default.
- W4311341922 hasAuthorship W4311341922A5079466608 @default.
- W4311341922 hasConcept C101601086 @default.
- W4311341922 hasConcept C105795698 @default.
- W4311341922 hasConcept C119857082 @default.
- W4311341922 hasConcept C121332964 @default.
- W4311341922 hasConcept C127413603 @default.
- W4311341922 hasConcept C159744936 @default.
- W4311341922 hasConcept C187320778 @default.
- W4311341922 hasConcept C188287460 @default.
- W4311341922 hasConcept C18903297 @default.
- W4311341922 hasConcept C2780092901 @default.
- W4311341922 hasConcept C2780797713 @default.
- W4311341922 hasConcept C33923547 @default.
- W4311341922 hasConcept C39432304 @default.
- W4311341922 hasConcept C41008148 @default.
- W4311341922 hasConcept C521259446 @default.
- W4311341922 hasConcept C61797465 @default.
- W4311341922 hasConcept C62520636 @default.
- W4311341922 hasConcept C76886044 @default.
- W4311341922 hasConcept C86803240 @default.
- W4311341922 hasConcept C87717796 @default.
- W4311341922 hasConcept C94061648 @default.
- W4311341922 hasConceptScore W4311341922C101601086 @default.
- W4311341922 hasConceptScore W4311341922C105795698 @default.
- W4311341922 hasConceptScore W4311341922C119857082 @default.
- W4311341922 hasConceptScore W4311341922C121332964 @default.
- W4311341922 hasConceptScore W4311341922C127413603 @default.
- W4311341922 hasConceptScore W4311341922C159744936 @default.
- W4311341922 hasConceptScore W4311341922C187320778 @default.
- W4311341922 hasConceptScore W4311341922C188287460 @default.
- W4311341922 hasConceptScore W4311341922C18903297 @default.
- W4311341922 hasConceptScore W4311341922C2780092901 @default.
- W4311341922 hasConceptScore W4311341922C2780797713 @default.
- W4311341922 hasConceptScore W4311341922C33923547 @default.
- W4311341922 hasConceptScore W4311341922C39432304 @default.
- W4311341922 hasConceptScore W4311341922C41008148 @default.
- W4311341922 hasConceptScore W4311341922C521259446 @default.
- W4311341922 hasConceptScore W4311341922C61797465 @default.
- W4311341922 hasConceptScore W4311341922C62520636 @default.
- W4311341922 hasConceptScore W4311341922C76886044 @default.
- W4311341922 hasConceptScore W4311341922C86803240 @default.
- W4311341922 hasConceptScore W4311341922C87717796 @default.
- W4311341922 hasConceptScore W4311341922C94061648 @default.
- W4311341922 hasFunder F4320310972 @default.
- W4311341922 hasFunder F4320321586 @default.
- W4311341922 hasFunder F4320334009 @default.
- W4311341922 hasLocation W43113419221 @default.
- W4311341922 hasLocation W43113419222 @default.
- W4311341922 hasOpenAccess W4311341922 @default.
- W4311341922 hasPrimaryLocation W43113419221 @default.
- W4311341922 hasRelatedWork W1572262254 @default.
- W4311341922 hasRelatedWork W2123233148 @default.
- W4311341922 hasRelatedWork W2345400099 @default.
- W4311341922 hasRelatedWork W2349713366 @default.
- W4311341922 hasRelatedWork W2358132898 @default.
- W4311341922 hasRelatedWork W2393599727 @default.
- W4311341922 hasRelatedWork W2552263465 @default.
- W4311341922 hasRelatedWork W2781674468 @default.
- W4311341922 hasRelatedWork W2998120969 @default.