Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311342303> ?p ?o ?g. }
- W4311342303 endingPage "1012" @default.
- W4311342303 startingPage "1002" @default.
- W4311342303 abstract "Identification of B-cell epitopes (BCEs) plays an essential role in the development of peptide vaccines and immuno-diagnostic reagents, as well as antibody design and production. In this work, we generated a large benchmark dataset comprising 124,879 experimentally supported linear epitope-containing regions in 3567 protein clusters from over 1.3 million B cell assays. Analysis of this curated dataset showed large pathogen diversity covering 176 different families. The accuracy in linear BCE prediction was found to strongly vary with different features, while all sequence-derived and structural features were informative. To search more efficient and interpretive feature representations, a ten-layer deep learning framework for linear BCE prediction, namely NetBCE, was developed. NetBCE achieved high accuracy and robust performance with the average area under the curve (AUC) value of 0.8455 in five-fold cross-validation through automatically learning the informative classification features. NetBCE substantially outperformed the conventional machine learning algorithms and other tools, with more than 22.06% improvement of AUC value compared to other tools using an independent dataset. Through investigating the output of important network modules in NetBCE, epitopes and non-epitopes tended to be presented in distinct regions with efficient feature representation along the network layer hierarchy. The NetBCE is freely available at https://github.com/bsml320/NetBCE." @default.
- W4311342303 created "2022-12-25" @default.
- W4311342303 creator A5006688612 @default.
- W4311342303 creator A5008581924 @default.
- W4311342303 date "2022-10-01" @default.
- W4311342303 modified "2023-10-14" @default.
- W4311342303 title "NetBCE: An Interpretable Deep Neural Network for Accurate Prediction of Linear B-cell Epitopes" @default.
- W4311342303 cites W1437335841 @default.
- W4311342303 cites W1526839960 @default.
- W4311342303 cites W1998393744 @default.
- W4311342303 cites W1999565480 @default.
- W4311342303 cites W2004216886 @default.
- W4311342303 cites W2013469333 @default.
- W4311342303 cites W2020587189 @default.
- W4311342303 cites W2035014358 @default.
- W4311342303 cites W2043338013 @default.
- W4311342303 cites W2059178238 @default.
- W4311342303 cites W2066609648 @default.
- W4311342303 cites W2087230890 @default.
- W4311342303 cites W2087937056 @default.
- W4311342303 cites W2092764309 @default.
- W4311342303 cites W2097850195 @default.
- W4311342303 cites W2097874743 @default.
- W4311342303 cites W2118943119 @default.
- W4311342303 cites W2123685182 @default.
- W4311342303 cites W2130887658 @default.
- W4311342303 cites W2147863530 @default.
- W4311342303 cites W2149458203 @default.
- W4311342303 cites W2149984099 @default.
- W4311342303 cites W2155774595 @default.
- W4311342303 cites W2155816055 @default.
- W4311342303 cites W2170703656 @default.
- W4311342303 cites W2170747616 @default.
- W4311342303 cites W2307425316 @default.
- W4311342303 cites W2311607323 @default.
- W4311342303 cites W2540069603 @default.
- W4311342303 cites W2562638954 @default.
- W4311342303 cites W2610582292 @default.
- W4311342303 cites W2611314002 @default.
- W4311342303 cites W2762181149 @default.
- W4311342303 cites W2782689871 @default.
- W4311342303 cites W2884557428 @default.
- W4311342303 cites W2898389621 @default.
- W4311342303 cites W2901496107 @default.
- W4311342303 cites W2902669473 @default.
- W4311342303 cites W2965883740 @default.
- W4311342303 cites W2999044305 @default.
- W4311342303 cites W3004392625 @default.
- W4311342303 cites W3011725683 @default.
- W4311342303 cites W3014226969 @default.
- W4311342303 cites W3022910488 @default.
- W4311342303 cites W3024570138 @default.
- W4311342303 cites W3031830637 @default.
- W4311342303 cites W3033962839 @default.
- W4311342303 cites W3037668068 @default.
- W4311342303 cites W3082590494 @default.
- W4311342303 cites W3086901785 @default.
- W4311342303 cites W3094373383 @default.
- W4311342303 cites W3134499419 @default.
- W4311342303 cites W3136918052 @default.
- W4311342303 cites W3207659918 @default.
- W4311342303 cites W3213184710 @default.
- W4311342303 cites W4320800886 @default.
- W4311342303 doi "https://doi.org/10.1016/j.gpb.2022.11.009" @default.
- W4311342303 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36526218" @default.
- W4311342303 hasPublicationYear "2022" @default.
- W4311342303 type Work @default.
- W4311342303 citedByCount "5" @default.
- W4311342303 countsByYear W43113423032022 @default.
- W4311342303 countsByYear W43113423032023 @default.
- W4311342303 crossrefType "journal-article" @default.
- W4311342303 hasAuthorship W4311342303A5006688612 @default.
- W4311342303 hasAuthorship W4311342303A5008581924 @default.
- W4311342303 hasBestOaLocation W43113423032 @default.
- W4311342303 hasConcept C103278499 @default.
- W4311342303 hasConcept C115961682 @default.
- W4311342303 hasConcept C119857082 @default.
- W4311342303 hasConcept C13280743 @default.
- W4311342303 hasConcept C138885662 @default.
- W4311342303 hasConcept C147483822 @default.
- W4311342303 hasConcept C153180895 @default.
- W4311342303 hasConcept C154945302 @default.
- W4311342303 hasConcept C17744445 @default.
- W4311342303 hasConcept C185798385 @default.
- W4311342303 hasConcept C195616568 @default.
- W4311342303 hasConcept C199539241 @default.
- W4311342303 hasConcept C205649164 @default.
- W4311342303 hasConcept C2776291640 @default.
- W4311342303 hasConcept C2776359362 @default.
- W4311342303 hasConcept C2776401178 @default.
- W4311342303 hasConcept C41008148 @default.
- W4311342303 hasConcept C41895202 @default.
- W4311342303 hasConcept C50644808 @default.
- W4311342303 hasConcept C54355233 @default.
- W4311342303 hasConcept C70721500 @default.
- W4311342303 hasConcept C86803240 @default.
- W4311342303 hasConcept C94625758 @default.
- W4311342303 hasConceptScore W4311342303C103278499 @default.