Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311343059> ?p ?o ?g. }
- W4311343059 endingPage "102707" @default.
- W4311343059 startingPage "102707" @default.
- W4311343059 abstract "Agent-based modeling (ABM) has been widely employed by researchers in various domains. Developing valid and useful agent-based models (ABMs) imposes challenges on the modelers. Using machine learning (ML) techniques in ABMs may facilitate the development of these models and improve their performance. This paper provides a detailed overview of the relationship between ML and ABM approaches. The benefits and drawbacks of data-driven ABMs are evaluated. A main scheme for utilizing ML techniques in ABMs is provided and explored through references to the relevant studies. As part of the primary scheme, a framework for modeling agent behaviors in ABMs utilizing ML approaches is proposed. In the framework, theoretical support is also combined with ML approaches in order to increase the accuracy of agent behavior generated by ML approaches. Using the suggested framework, a real-world case study is performed to investigate the application of ML techniques to improve the accuracy of ABMs and facilitate their creation. The findings indicate that ML approaches may facilitate the construction of ABMs." @default.
- W4311343059 created "2022-12-25" @default.
- W4311343059 creator A5015084302 @default.
- W4311343059 creator A5065594133 @default.
- W4311343059 date "2023-02-01" @default.
- W4311343059 modified "2023-09-25" @default.
- W4311343059 title "A framework proposal for machine learning-driven agent-based models through a case study analysis" @default.
- W4311343059 cites W1865292614 @default.
- W4311343059 cites W1967160055 @default.
- W4311343059 cites W1994940961 @default.
- W4311343059 cites W2009881211 @default.
- W4311343059 cites W2018956606 @default.
- W4311343059 cites W2049164421 @default.
- W4311343059 cites W2052962879 @default.
- W4311343059 cites W2099240809 @default.
- W4311343059 cites W2143797502 @default.
- W4311343059 cites W2158335518 @default.
- W4311343059 cites W2167508872 @default.
- W4311343059 cites W2171074980 @default.
- W4311343059 cites W2260297278 @default.
- W4311343059 cites W2280914777 @default.
- W4311343059 cites W2282948107 @default.
- W4311343059 cites W2283942731 @default.
- W4311343059 cites W2513172296 @default.
- W4311343059 cites W2533084622 @default.
- W4311343059 cites W2539131393 @default.
- W4311343059 cites W2551238576 @default.
- W4311343059 cites W2590078953 @default.
- W4311343059 cites W2595937625 @default.
- W4311343059 cites W2604753731 @default.
- W4311343059 cites W2604765399 @default.
- W4311343059 cites W2606973403 @default.
- W4311343059 cites W2753043462 @default.
- W4311343059 cites W2767293185 @default.
- W4311343059 cites W2775036287 @default.
- W4311343059 cites W2806054145 @default.
- W4311343059 cites W2886143699 @default.
- W4311343059 cites W2897737779 @default.
- W4311343059 cites W2899643216 @default.
- W4311343059 cites W2905576123 @default.
- W4311343059 cites W2927690036 @default.
- W4311343059 cites W2937307539 @default.
- W4311343059 cites W2947788863 @default.
- W4311343059 cites W2955640747 @default.
- W4311343059 cites W2980076044 @default.
- W4311343059 cites W2981836045 @default.
- W4311343059 cites W2996061341 @default.
- W4311343059 cites W2999892762 @default.
- W4311343059 cites W3001782479 @default.
- W4311343059 cites W3007790934 @default.
- W4311343059 cites W3014128467 @default.
- W4311343059 cites W3079312613 @default.
- W4311343059 cites W3088818935 @default.
- W4311343059 cites W3119200840 @default.
- W4311343059 cites W3123075041 @default.
- W4311343059 cites W3131373869 @default.
- W4311343059 cites W3136811339 @default.
- W4311343059 cites W3137670302 @default.
- W4311343059 cites W3142875107 @default.
- W4311343059 cites W3159677795 @default.
- W4311343059 cites W3185153964 @default.
- W4311343059 cites W3187488983 @default.
- W4311343059 cites W4293033026 @default.
- W4311343059 doi "https://doi.org/10.1016/j.simpat.2022.102707" @default.
- W4311343059 hasPublicationYear "2023" @default.
- W4311343059 type Work @default.
- W4311343059 citedByCount "1" @default.
- W4311343059 countsByYear W43113430592023 @default.
- W4311343059 crossrefType "journal-article" @default.
- W4311343059 hasAuthorship W4311343059A5015084302 @default.
- W4311343059 hasAuthorship W4311343059A5065594133 @default.
- W4311343059 hasConcept C119857082 @default.
- W4311343059 hasConcept C127413603 @default.
- W4311343059 hasConcept C134306372 @default.
- W4311343059 hasConcept C154945302 @default.
- W4311343059 hasConcept C201995342 @default.
- W4311343059 hasConcept C2522767166 @default.
- W4311343059 hasConcept C33923547 @default.
- W4311343059 hasConcept C41008148 @default.
- W4311343059 hasConcept C41550386 @default.
- W4311343059 hasConcept C77618280 @default.
- W4311343059 hasConceptScore W4311343059C119857082 @default.
- W4311343059 hasConceptScore W4311343059C127413603 @default.
- W4311343059 hasConceptScore W4311343059C134306372 @default.
- W4311343059 hasConceptScore W4311343059C154945302 @default.
- W4311343059 hasConceptScore W4311343059C201995342 @default.
- W4311343059 hasConceptScore W4311343059C2522767166 @default.
- W4311343059 hasConceptScore W4311343059C33923547 @default.
- W4311343059 hasConceptScore W4311343059C41008148 @default.
- W4311343059 hasConceptScore W4311343059C41550386 @default.
- W4311343059 hasConceptScore W4311343059C77618280 @default.
- W4311343059 hasLocation W43113430591 @default.
- W4311343059 hasOpenAccess W4311343059 @default.
- W4311343059 hasPrimaryLocation W43113430591 @default.
- W4311343059 hasRelatedWork W2370734038 @default.
- W4311343059 hasRelatedWork W2373250155 @default.
- W4311343059 hasRelatedWork W2899084033 @default.
- W4311343059 hasRelatedWork W2961085424 @default.