Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311344540> ?p ?o ?g. }
- W4311344540 endingPage "025001" @default.
- W4311344540 startingPage "025001" @default.
- W4311344540 abstract "Abstract Significant variations in the tensile strength of unidirectional (UD) fiber-reinforced composites are frequently observed due to randomness in the fiber arrays. Herein, we propose a novel method for predicting tensile strength capable of quantifying uncertainty based on a new recurrence relation for fiber fracture propagation and a determination algorithm for the fracture sequence for random fiber arrays (RFAs). We performed finite element simulations, calculating the stress concentration factor (SCF) for UD composites with various RFAs. Then, we trained an artificial neural network with the obtained SCF data and used it to predict the SCF for composites with an arbitrary RFA. The tensile strength of UD composites was predicted over a range of values, demonstrating that accuracy was superior to conventional prediction methods." @default.
- W4311344540 created "2022-12-25" @default.
- W4311344540 creator A5070005338 @default.
- W4311344540 creator A5073817759 @default.
- W4311344540 creator A5082818381 @default.
- W4311344540 date "2022-12-22" @default.
- W4311344540 modified "2023-09-24" @default.
- W4311344540 title "Machine learning-assisted modelling of stress concentration factor of unidirectional fiber composites for predicting their tensile strength" @default.
- W4311344540 cites W1570454461 @default.
- W4311344540 cites W1584762372 @default.
- W4311344540 cites W1970950528 @default.
- W4311344540 cites W1973520897 @default.
- W4311344540 cites W1976014787 @default.
- W4311344540 cites W1987000625 @default.
- W4311344540 cites W1987452317 @default.
- W4311344540 cites W1989123701 @default.
- W4311344540 cites W1990144930 @default.
- W4311344540 cites W1991417474 @default.
- W4311344540 cites W1994821160 @default.
- W4311344540 cites W1995531293 @default.
- W4311344540 cites W1996630164 @default.
- W4311344540 cites W2008830250 @default.
- W4311344540 cites W2017810033 @default.
- W4311344540 cites W2019485467 @default.
- W4311344540 cites W2021097885 @default.
- W4311344540 cites W2023717904 @default.
- W4311344540 cites W2039854747 @default.
- W4311344540 cites W2046518422 @default.
- W4311344540 cites W2047961955 @default.
- W4311344540 cites W2048022798 @default.
- W4311344540 cites W2050397724 @default.
- W4311344540 cites W2056629974 @default.
- W4311344540 cites W2069434240 @default.
- W4311344540 cites W2071421711 @default.
- W4311344540 cites W2072788374 @default.
- W4311344540 cites W2074186623 @default.
- W4311344540 cites W2077960812 @default.
- W4311344540 cites W2084732496 @default.
- W4311344540 cites W2085652047 @default.
- W4311344540 cites W2142052648 @default.
- W4311344540 cites W2197096849 @default.
- W4311344540 cites W2398546056 @default.
- W4311344540 cites W2484618892 @default.
- W4311344540 cites W2552806983 @default.
- W4311344540 cites W2588436666 @default.
- W4311344540 cites W2766966300 @default.
- W4311344540 cites W2767363635 @default.
- W4311344540 cites W2778109065 @default.
- W4311344540 cites W2791544717 @default.
- W4311344540 cites W2803170602 @default.
- W4311344540 cites W2842836454 @default.
- W4311344540 cites W2883482411 @default.
- W4311344540 cites W2886881512 @default.
- W4311344540 cites W2893769615 @default.
- W4311344540 cites W2904355635 @default.
- W4311344540 cites W2913344915 @default.
- W4311344540 cites W2922787593 @default.
- W4311344540 cites W2943419739 @default.
- W4311344540 cites W3007201237 @default.
- W4311344540 cites W3034404082 @default.
- W4311344540 cites W3038034444 @default.
- W4311344540 cites W3043270234 @default.
- W4311344540 cites W3050320666 @default.
- W4311344540 cites W3111963573 @default.
- W4311344540 cites W3175215392 @default.
- W4311344540 cites W3191891057 @default.
- W4311344540 cites W4287730493 @default.
- W4311344540 cites W4291011663 @default.
- W4311344540 doi "https://doi.org/10.1088/1361-651x/acaaf8" @default.
- W4311344540 hasPublicationYear "2022" @default.
- W4311344540 type Work @default.
- W4311344540 citedByCount "0" @default.
- W4311344540 crossrefType "journal-article" @default.
- W4311344540 hasAuthorship W4311344540A5070005338 @default.
- W4311344540 hasAuthorship W4311344540A5073817759 @default.
- W4311344540 hasAuthorship W4311344540A5082818381 @default.
- W4311344540 hasConcept C105795698 @default.
- W4311344540 hasConcept C112950240 @default.
- W4311344540 hasConcept C119857082 @default.
- W4311344540 hasConcept C125112378 @default.
- W4311344540 hasConcept C127413603 @default.
- W4311344540 hasConcept C135628077 @default.
- W4311344540 hasConcept C138885662 @default.
- W4311344540 hasConcept C159985019 @default.
- W4311344540 hasConcept C192562407 @default.
- W4311344540 hasConcept C21036866 @default.
- W4311344540 hasConcept C33923547 @default.
- W4311344540 hasConcept C41008148 @default.
- W4311344540 hasConcept C41895202 @default.
- W4311344540 hasConcept C43369102 @default.
- W4311344540 hasConcept C50644808 @default.
- W4311344540 hasConcept C519885992 @default.
- W4311344540 hasConcept C66938386 @default.
- W4311344540 hasConceptScore W4311344540C105795698 @default.
- W4311344540 hasConceptScore W4311344540C112950240 @default.
- W4311344540 hasConceptScore W4311344540C119857082 @default.
- W4311344540 hasConceptScore W4311344540C125112378 @default.
- W4311344540 hasConceptScore W4311344540C127413603 @default.