Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311348320> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4311348320 endingPage "34" @default.
- W4311348320 startingPage "23" @default.
- W4311348320 abstract "Kinases are phosphate catalysing enzymes that have traditionally proved difficult to target against ligands,and hence inefficacious in drug development. There are two colluding reasons for this. First is the issue of specificity. The homogeneity that exists between the kinase ATP-binding pockets makes it a non-realisable target to developcompounds that would inhibit only one out of 538 protein kinases encoded by the human genome, without inhibitingsome of the others. Second, producing compounds with the required efficacy to rival the millimolar ATP concentrations present in cells is stoichiometrically inefficient. This study uses a recently propounded computational strategy based onStructure Based Virtual Screening (SBVS) that was previously benchmarked on 999 DUD-E protein decoys(Chattopadhyay et al, Int Sc. Comp. Life Sciences 2022), to rank potential ligands, or by extension rank kinase-ligand pairs, identifying best matching ligand:kinase docking pairs. The results of the SBVS campaign employing severalcomputational algorithms reveal variations in the preferred top hits. To address this, we introduce a novel consensusscoring algorithm by sampling statistics across four independent statistical universality classes, statistically combining docking scores from ten docking programs (DOCK, Quick Vina-W, Vina Carb, PLANTS, Autodock, QuickVina2,QuickVina21, Smina, Autodock Vina and VinaXB) to create a holistic SBVS formulation that can identify active ligandsfor any target. Our results demonstrate that CS provides improved ligand:kinase docking fidelity when compared to individual docking platforms, requiring only a small number of docking combinations, and can serve as a viable andthrifty alternative to expensive docking platforms." @default.
- W4311348320 created "2022-12-25" @default.
- W4311348320 creator A5040771905 @default.
- W4311348320 creator A5042904764 @default.
- W4311348320 creator A5052912254 @default.
- W4311348320 date "2022-12-12" @default.
- W4311348320 modified "2023-09-25" @default.
- W4311348320 title "Virtual Screening of Kinase Based Drugs: Statistical Learning Towards Drug Repositioning" @default.
- W4311348320 doi "https://doi.org/10.12974/2311-8792.2022.08.03" @default.
- W4311348320 hasPublicationYear "2022" @default.
- W4311348320 type Work @default.
- W4311348320 citedByCount "0" @default.
- W4311348320 crossrefType "journal-article" @default.
- W4311348320 hasAuthorship W4311348320A5040771905 @default.
- W4311348320 hasAuthorship W4311348320A5042904764 @default.
- W4311348320 hasAuthorship W4311348320A5052912254 @default.
- W4311348320 hasBestOaLocation W43113483201 @default.
- W4311348320 hasConcept C103697762 @default.
- W4311348320 hasConcept C104317684 @default.
- W4311348320 hasConcept C159110408 @default.
- W4311348320 hasConcept C184235292 @default.
- W4311348320 hasConcept C185592680 @default.
- W4311348320 hasConcept C2775905019 @default.
- W4311348320 hasConcept C2780152424 @default.
- W4311348320 hasConcept C41008148 @default.
- W4311348320 hasConcept C41685203 @default.
- W4311348320 hasConcept C55493867 @default.
- W4311348320 hasConcept C70721500 @default.
- W4311348320 hasConcept C71924100 @default.
- W4311348320 hasConcept C74187038 @default.
- W4311348320 hasConcept C77319485 @default.
- W4311348320 hasConcept C86803240 @default.
- W4311348320 hasConcept C93073132 @default.
- W4311348320 hasConceptScore W4311348320C103697762 @default.
- W4311348320 hasConceptScore W4311348320C104317684 @default.
- W4311348320 hasConceptScore W4311348320C159110408 @default.
- W4311348320 hasConceptScore W4311348320C184235292 @default.
- W4311348320 hasConceptScore W4311348320C185592680 @default.
- W4311348320 hasConceptScore W4311348320C2775905019 @default.
- W4311348320 hasConceptScore W4311348320C2780152424 @default.
- W4311348320 hasConceptScore W4311348320C41008148 @default.
- W4311348320 hasConceptScore W4311348320C41685203 @default.
- W4311348320 hasConceptScore W4311348320C55493867 @default.
- W4311348320 hasConceptScore W4311348320C70721500 @default.
- W4311348320 hasConceptScore W4311348320C71924100 @default.
- W4311348320 hasConceptScore W4311348320C74187038 @default.
- W4311348320 hasConceptScore W4311348320C77319485 @default.
- W4311348320 hasConceptScore W4311348320C86803240 @default.
- W4311348320 hasConceptScore W4311348320C93073132 @default.
- W4311348320 hasLocation W43113483201 @default.
- W4311348320 hasLocation W43113483202 @default.
- W4311348320 hasOpenAccess W4311348320 @default.
- W4311348320 hasPrimaryLocation W43113483201 @default.
- W4311348320 hasRelatedWork W1594539819 @default.
- W4311348320 hasRelatedWork W2050992060 @default.
- W4311348320 hasRelatedWork W2154054857 @default.
- W4311348320 hasRelatedWork W2269591907 @default.
- W4311348320 hasRelatedWork W2336040088 @default.
- W4311348320 hasRelatedWork W2363489140 @default.
- W4311348320 hasRelatedWork W3193731429 @default.
- W4311348320 hasRelatedWork W3203882266 @default.
- W4311348320 hasRelatedWork W4322500885 @default.
- W4311348320 hasRelatedWork W4324347369 @default.
- W4311348320 hasVolume "8" @default.
- W4311348320 isParatext "false" @default.
- W4311348320 isRetracted "false" @default.
- W4311348320 workType "article" @default.