Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311364157> ?p ?o ?g. }
- W4311364157 endingPage "793" @default.
- W4311364157 startingPage "793" @default.
- W4311364157 abstract "The prevalence of anxiety among university students is increasing, resulting in the negative impact on their academic and social (behavioral and emotional) development. In order for students to have competitive academic performance, the cognitive function should be strengthened by detecting and handling anxiety. Over a period of 6 weeks, this study examined how to detect anxiety and how Mano Shakti Yoga (MSY) helps reduce anxiety. Relying on cardiac signals, this study follows an integrated detection-estimation-reduction framework for anxiety using the Intelligent Internet of Medical Things (IIoMT) and MSY. IIoMT is the integration of Internet of Medical Things (wearable smart belt) and machine learning algorithms (Decision Tree (DT), Random Forest (RF), and AdaBoost (AB)). Sixty-six eligible students were selected as experiencing anxiety detected based on the results of self-rating anxiety scale (SAS) questionnaire and a smart belt. Then, the students were divided randomly into two groups: experimental and control. The experimental group followed an MSY intervention for one hour twice a week, while the control group followed their own daily routine. Machine learning algorithms are used to analyze the data obtained from the smart belt. MSY is an alternative improvement for the immune system that helps reduce anxiety. All the results illustrate that the experimental group reduced anxiety with a significant (p < 0.05) difference in group × time interaction compared to the control group. The intelligent techniques achieved maximum accuracy of 80% on using RF algorithm. Thus, students can practice MSY and concentrate on their objectives by improving their intelligence, attention, and memory." @default.
- W4311364157 created "2022-12-25" @default.
- W4311364157 creator A5001571514 @default.
- W4311364157 creator A5006217476 @default.
- W4311364157 creator A5012360964 @default.
- W4311364157 creator A5020543944 @default.
- W4311364157 creator A5029916375 @default.
- W4311364157 creator A5046258353 @default.
- W4311364157 creator A5055354839 @default.
- W4311364157 creator A5060396811 @default.
- W4311364157 creator A5065376533 @default.
- W4311364157 date "2022-12-12" @default.
- W4311364157 modified "2023-10-05" @default.
- W4311364157 title "A Novel Smart Belt for Anxiety Detection, Classification, and Reduction Using IIoMT on Students’ Cardiac Signal and MSY" @default.
- W4311364157 cites W1969547130 @default.
- W4311364157 cites W1976186999 @default.
- W4311364157 cites W1982828750 @default.
- W4311364157 cites W1986211833 @default.
- W4311364157 cites W2009299607 @default.
- W4311364157 cites W2052895717 @default.
- W4311364157 cites W2090186925 @default.
- W4311364157 cites W2154053567 @default.
- W4311364157 cites W2162273778 @default.
- W4311364157 cites W2177703944 @default.
- W4311364157 cites W2550321426 @default.
- W4311364157 cites W2790582983 @default.
- W4311364157 cites W2794914738 @default.
- W4311364157 cites W2875602397 @default.
- W4311364157 cites W2883132521 @default.
- W4311364157 cites W2890527005 @default.
- W4311364157 cites W2891230948 @default.
- W4311364157 cites W2904290925 @default.
- W4311364157 cites W2921330625 @default.
- W4311364157 cites W2934408655 @default.
- W4311364157 cites W2944588740 @default.
- W4311364157 cites W2950515178 @default.
- W4311364157 cites W2956175108 @default.
- W4311364157 cites W2960917605 @default.
- W4311364157 cites W2969073395 @default.
- W4311364157 cites W2979893065 @default.
- W4311364157 cites W2990331389 @default.
- W4311364157 cites W2993430556 @default.
- W4311364157 cites W2996696601 @default.
- W4311364157 cites W3015112334 @default.
- W4311364157 cites W3016798565 @default.
- W4311364157 cites W3025320498 @default.
- W4311364157 cites W3032995520 @default.
- W4311364157 cites W3035566204 @default.
- W4311364157 cites W3042221652 @default.
- W4311364157 cites W3048917165 @default.
- W4311364157 cites W3093785423 @default.
- W4311364157 cites W3111445410 @default.
- W4311364157 cites W3121633856 @default.
- W4311364157 cites W3126567091 @default.
- W4311364157 cites W3127976743 @default.
- W4311364157 cites W3129046460 @default.
- W4311364157 cites W3153885991 @default.
- W4311364157 cites W3181879896 @default.
- W4311364157 cites W3186749889 @default.
- W4311364157 cites W3196669126 @default.
- W4311364157 cites W3197315056 @default.
- W4311364157 cites W3208958020 @default.
- W4311364157 cites W4200209073 @default.
- W4311364157 cites W4200449131 @default.
- W4311364157 cites W4205262431 @default.
- W4311364157 cites W4223584650 @default.
- W4311364157 cites W4225316828 @default.
- W4311364157 cites W4225319402 @default.
- W4311364157 cites W4240409582 @default.
- W4311364157 cites W4280518303 @default.
- W4311364157 cites W4281294571 @default.
- W4311364157 cites W4281562310 @default.
- W4311364157 cites W4281784627 @default.
- W4311364157 cites W4283022701 @default.
- W4311364157 cites W4285394404 @default.
- W4311364157 cites W4285795532 @default.
- W4311364157 cites W4286840676 @default.
- W4311364157 cites W4288064604 @default.
- W4311364157 cites W4293345343 @default.
- W4311364157 cites W4295025118 @default.
- W4311364157 cites W4296050354 @default.
- W4311364157 cites W4297996402 @default.
- W4311364157 cites W4307372254 @default.
- W4311364157 cites W4312373349 @default.
- W4311364157 doi "https://doi.org/10.3390/bioengineering9120793" @default.
- W4311364157 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36550999" @default.
- W4311364157 hasPublicationYear "2022" @default.
- W4311364157 type Work @default.
- W4311364157 citedByCount "5" @default.
- W4311364157 countsByYear W43113641572023 @default.
- W4311364157 crossrefType "journal-article" @default.
- W4311364157 hasAuthorship W4311364157A5001571514 @default.
- W4311364157 hasAuthorship W4311364157A5006217476 @default.
- W4311364157 hasAuthorship W4311364157A5012360964 @default.
- W4311364157 hasAuthorship W4311364157A5020543944 @default.
- W4311364157 hasAuthorship W4311364157A5029916375 @default.
- W4311364157 hasAuthorship W4311364157A5046258353 @default.
- W4311364157 hasAuthorship W4311364157A5055354839 @default.