Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311364216> ?p ?o ?g. }
- W4311364216 endingPage "3145" @default.
- W4311364216 startingPage "3145" @default.
- W4311364216 abstract "Skin cancer is one of the most severe forms of the disease, and it can spread to other parts of the body if not detected early. Therefore, diagnosing and treating skin cancer patients at an early stage is crucial. Since a manual skin cancer diagnosis is both time-consuming and expensive, an incorrect diagnosis is made due to the high similarity between the various skin cancers. Improved categorization of multiclass skin cancers requires the development of automated diagnostic systems. Herein, we propose a fully automatic method for classifying several skin cancers by fine-tuning the deep learning models VGG16, ResNet50, and ResNet101. Prior to model creation, the training dataset should undergo data augmentation using traditional image transformation techniques and Generative Adversarial Networks (GANs) to prevent class imbalance issues that may lead to model overfitting. In this study, we investigate the feasibility of creating dermoscopic images that have a realistic appearance using Conditional Generative Adversarial Network (CGAN) techniques. Thereafter, the traditional augmentation methods are used to augment our existing training set to improve the performance of pre-trained deep models on the skin cancer classification task. This improved performance is then compared to the models developed using the unbalanced dataset. In addition, we formed an ensemble of finely tuned transfer learning models, which we trained on balanced and unbalanced datasets. These models were used to make predictions about the data. With appropriate data augmentation, the proposed models attained an accuracy of 92% for VGG16, 92% for ResNet50, and 92.25% for ResNet101, respectively. The ensemble of these models increased the accuracy to 93.5%. A comprehensive discussion on the performance of the models concluded that using this method possibly leads to enhanced performance in skin cancer categorization compared to the efforts made in the past." @default.
- W4311364216 created "2022-12-25" @default.
- W4311364216 creator A5033923198 @default.
- W4311364216 creator A5037293810 @default.
- W4311364216 creator A5050896675 @default.
- W4311364216 creator A5059829609 @default.
- W4311364216 creator A5062814216 @default.
- W4311364216 creator A5078354205 @default.
- W4311364216 date "2022-12-13" @default.
- W4311364216 modified "2023-09-26" @default.
- W4311364216 title "An Ensemble of Transfer Learning Models for the Prediction of Skin Cancers with Conditional Generative Adversarial Networks" @default.
- W4311364216 cites W1884191083 @default.
- W4311364216 cites W1973590825 @default.
- W4311364216 cites W1984132569 @default.
- W4311364216 cites W1996828958 @default.
- W4311364216 cites W2013941226 @default.
- W4311364216 cites W2049209034 @default.
- W4311364216 cites W2061253660 @default.
- W4311364216 cites W2119277951 @default.
- W4311364216 cites W2164273268 @default.
- W4311364216 cites W2180648740 @default.
- W4311364216 cites W2194775991 @default.
- W4311364216 cites W2479132886 @default.
- W4311364216 cites W2564782580 @default.
- W4311364216 cites W2581082771 @default.
- W4311364216 cites W2757946740 @default.
- W4311364216 cites W2808402517 @default.
- W4311364216 cites W2889646458 @default.
- W4311364216 cites W2899425762 @default.
- W4311364216 cites W2911653980 @default.
- W4311364216 cites W2943964494 @default.
- W4311364216 cites W2944988845 @default.
- W4311364216 cites W2953793731 @default.
- W4311364216 cites W2963946669 @default.
- W4311364216 cites W2979306089 @default.
- W4311364216 cites W2979830539 @default.
- W4311364216 cites W3025204993 @default.
- W4311364216 cites W3029477994 @default.
- W4311364216 cites W3044795413 @default.
- W4311364216 cites W3102443681 @default.
- W4311364216 cites W3102785203 @default.
- W4311364216 cites W3108671495 @default.
- W4311364216 cites W3113519107 @default.
- W4311364216 cites W3117497340 @default.
- W4311364216 cites W3128238305 @default.
- W4311364216 cites W3158076558 @default.
- W4311364216 cites W3158223836 @default.
- W4311364216 cites W3174972843 @default.
- W4311364216 cites W3177011614 @default.
- W4311364216 cites W4220678321 @default.
- W4311364216 cites W4220879402 @default.
- W4311364216 cites W4224297054 @default.
- W4311364216 cites W4229857747 @default.
- W4311364216 cites W4255421341 @default.
- W4311364216 cites W4283526860 @default.
- W4311364216 cites W4283751601 @default.
- W4311364216 cites W4293450984 @default.
- W4311364216 cites W4294151662 @default.
- W4311364216 cites W4301065160 @default.
- W4311364216 cites W4303857474 @default.
- W4311364216 cites W85751367 @default.
- W4311364216 doi "https://doi.org/10.3390/diagnostics12123145" @default.
- W4311364216 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36553152" @default.
- W4311364216 hasPublicationYear "2022" @default.
- W4311364216 type Work @default.
- W4311364216 citedByCount "1" @default.
- W4311364216 countsByYear W43113642162023 @default.
- W4311364216 crossrefType "journal-article" @default.
- W4311364216 hasAuthorship W4311364216A5033923198 @default.
- W4311364216 hasAuthorship W4311364216A5037293810 @default.
- W4311364216 hasAuthorship W4311364216A5050896675 @default.
- W4311364216 hasAuthorship W4311364216A5059829609 @default.
- W4311364216 hasAuthorship W4311364216A5062814216 @default.
- W4311364216 hasAuthorship W4311364216A5078354205 @default.
- W4311364216 hasBestOaLocation W43113642161 @default.
- W4311364216 hasConcept C103278499 @default.
- W4311364216 hasConcept C108583219 @default.
- W4311364216 hasConcept C115961682 @default.
- W4311364216 hasConcept C119857082 @default.
- W4311364216 hasConcept C121608353 @default.
- W4311364216 hasConcept C12267149 @default.
- W4311364216 hasConcept C123860398 @default.
- W4311364216 hasConcept C126322002 @default.
- W4311364216 hasConcept C150899416 @default.
- W4311364216 hasConcept C153180895 @default.
- W4311364216 hasConcept C154945302 @default.
- W4311364216 hasConcept C177264268 @default.
- W4311364216 hasConcept C199360897 @default.
- W4311364216 hasConcept C22019652 @default.
- W4311364216 hasConcept C2777212361 @default.
- W4311364216 hasConcept C2777789703 @default.
- W4311364216 hasConcept C39890363 @default.
- W4311364216 hasConcept C41008148 @default.
- W4311364216 hasConcept C45942800 @default.
- W4311364216 hasConcept C50644808 @default.
- W4311364216 hasConcept C58489278 @default.
- W4311364216 hasConcept C71924100 @default.
- W4311364216 hasConcept C94124525 @default.