Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311372922> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4311372922 endingPage "100066" @default.
- W4311372922 startingPage "100066" @default.
- W4311372922 abstract "The electrocardiogram (ECG) is a diagnostic procedure that uses a skin electrode to record the heart's electrical activity. Heart diseases are the leading cause of mortality globally, and they have significant monetary cost. In the clinic, automated detection and classification technology of abnormalities in heart beats can assist physicians in making prompt and accurate medical diagnoses. This paper concentrates on two proposed models: Model A: 1-D 8-Layer CNN Model and Model B: 1- D CNN and the LSTM model to characterise ECG data into five categories: normal beat, right bundle branch block beat, left bundle branch block beat, premature ventricular contraction beat, and atrial premature beat. The data used to create and validate the models is obtained from the MIT-BIH Dataset, which comprises of 48 half-hour samples of two-lead continuous ECG signals obtained from 48 individuals. The dataset is divided into two files-.csv and.txt. For each sample, the.csv files include the readings collected from both leads. The experimental results show that Model A has an Accuracy = 99.68%, Precision = 99.23%, and a F1 score = 99.22%. And Model B has an Accuracy= 99.51%, Precision = 98.76%, and a F1 score = 98.76%. Our study aims to assist the medical sector by reducing the diagnoses time by automating the process of detecting arrythmias." @default.
- W4311372922 created "2022-12-25" @default.
- W4311372922 creator A5018396511 @default.
- W4311372922 creator A5055451847 @default.
- W4311372922 creator A5069333436 @default.
- W4311372922 creator A5076468174 @default.
- W4311372922 creator A5081345493 @default.
- W4311372922 date "2023-06-01" @default.
- W4311372922 modified "2023-09-30" @default.
- W4311372922 title "Automated Detection of Abnormalities in ECG signals using Deep Neural Network" @default.
- W4311372922 cites W2095409369 @default.
- W4311372922 cites W2291961022 @default.
- W4311372922 cites W2775229114 @default.
- W4311372922 cites W2999945891 @default.
- W4311372922 cites W3000556081 @default.
- W4311372922 cites W3096527050 @default.
- W4311372922 cites W3209983819 @default.
- W4311372922 cites W4200192756 @default.
- W4311372922 cites W4212792396 @default.
- W4311372922 doi "https://doi.org/10.1016/j.bea.2022.100066" @default.
- W4311372922 hasPublicationYear "2023" @default.
- W4311372922 type Work @default.
- W4311372922 citedByCount "0" @default.
- W4311372922 crossrefType "journal-article" @default.
- W4311372922 hasAuthorship W4311372922A5018396511 @default.
- W4311372922 hasAuthorship W4311372922A5055451847 @default.
- W4311372922 hasAuthorship W4311372922A5069333436 @default.
- W4311372922 hasAuthorship W4311372922A5076468174 @default.
- W4311372922 hasAuthorship W4311372922A5081345493 @default.
- W4311372922 hasBestOaLocation W43113729221 @default.
- W4311372922 hasConcept C121332964 @default.
- W4311372922 hasConcept C126322002 @default.
- W4311372922 hasConcept C142724271 @default.
- W4311372922 hasConcept C153180895 @default.
- W4311372922 hasConcept C154945302 @default.
- W4311372922 hasConcept C164705383 @default.
- W4311372922 hasConcept C189809214 @default.
- W4311372922 hasConcept C24890656 @default.
- W4311372922 hasConcept C2780040984 @default.
- W4311372922 hasConcept C2780350126 @default.
- W4311372922 hasConcept C28490314 @default.
- W4311372922 hasConcept C2982892191 @default.
- W4311372922 hasConcept C3019060180 @default.
- W4311372922 hasConcept C41008148 @default.
- W4311372922 hasConcept C50644808 @default.
- W4311372922 hasConcept C534262118 @default.
- W4311372922 hasConcept C71924100 @default.
- W4311372922 hasConceptScore W4311372922C121332964 @default.
- W4311372922 hasConceptScore W4311372922C126322002 @default.
- W4311372922 hasConceptScore W4311372922C142724271 @default.
- W4311372922 hasConceptScore W4311372922C153180895 @default.
- W4311372922 hasConceptScore W4311372922C154945302 @default.
- W4311372922 hasConceptScore W4311372922C164705383 @default.
- W4311372922 hasConceptScore W4311372922C189809214 @default.
- W4311372922 hasConceptScore W4311372922C24890656 @default.
- W4311372922 hasConceptScore W4311372922C2780040984 @default.
- W4311372922 hasConceptScore W4311372922C2780350126 @default.
- W4311372922 hasConceptScore W4311372922C28490314 @default.
- W4311372922 hasConceptScore W4311372922C2982892191 @default.
- W4311372922 hasConceptScore W4311372922C3019060180 @default.
- W4311372922 hasConceptScore W4311372922C41008148 @default.
- W4311372922 hasConceptScore W4311372922C50644808 @default.
- W4311372922 hasConceptScore W4311372922C534262118 @default.
- W4311372922 hasConceptScore W4311372922C71924100 @default.
- W4311372922 hasLocation W43113729221 @default.
- W4311372922 hasOpenAccess W4311372922 @default.
- W4311372922 hasPrimaryLocation W43113729221 @default.
- W4311372922 hasRelatedWork W1495140442 @default.
- W4311372922 hasRelatedWork W1971192386 @default.
- W4311372922 hasRelatedWork W2019752450 @default.
- W4311372922 hasRelatedWork W2074441626 @default.
- W4311372922 hasRelatedWork W2418737028 @default.
- W4311372922 hasRelatedWork W3115901059 @default.
- W4311372922 hasRelatedWork W3139767557 @default.
- W4311372922 hasRelatedWork W4238670373 @default.
- W4311372922 hasRelatedWork W4311372922 @default.
- W4311372922 hasRelatedWork W89420957 @default.
- W4311372922 hasVolume "5" @default.
- W4311372922 isParatext "false" @default.
- W4311372922 isRetracted "false" @default.
- W4311372922 workType "article" @default.