Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311376162> ?p ?o ?g. }
- W4311376162 endingPage "6296" @default.
- W4311376162 startingPage "6296" @default.
- W4311376162 abstract "Solar photovoltaic (PV) power generation is a vital renewable energy to achieve carbon neutrality. Previous studies which explored mapping PV using open satellite data mainly focus in remote areas. However, the complexity of land cover types can bring much difficulty in PV identification. This study investigated detecting PV in diverse landscapes using freely accessible remote sensing data, aiming to evaluate the transferability of PV detection between rural and urbanized coastal area. We developed a random forest-based PV classifier on Google Earth Engine in two provinces of China. Various features including Sentinel-2 reflectance, Sentinel-1 polarization, spectral indices and their corresponding textures were constructed. Thereafter, features with high permutation importance were retained. Three classification schemes with different training and test samples were, respectively, conducted. Finally, the VIIRS nighttime light data were utilized to refine the initial results. Manually collected samples and existing PV database were used to evaluate the accuracy of our method. The results revealed that the top three important features in detecting PV were the sum average texture of three bands (NDBI, VV, and VH). We found the classifier trained in highly urbanized coastal landscape with multiple PV types was more transferable (OA = 97.24%, kappa = 0.94), whereas the classifier trained in rural landscape with simple PV types was erroneous when applied vice versa (OA = 68.84%, kappa = 0.44). The highest accuracy was achieved when using training samples from both regions as expected (OA = 98.90%, kappa = 0.98). Our method recalled more than 94% PV in most existing databases. In particular, our method has a stronger detection ability of PV installed above water surface, which is often missing in existing PV databases. From this study, we found two main types of errors in mapping PV, including the bare rocks and mountain shadows in natural landscapes and the roofing polyethylene materials in urban settlements. In conclusion, the PV classifier trained in highly urbanized coastal landscapes with multiple PV types is more accurate than the classifier trained in rural landscapes. The VIIRS nighttime light data contribute greatly to remove PV detection errors caused by bare rocks and mountain shadows. The finding in our study can provide reference values for future large area PV monitoring." @default.
- W4311376162 created "2022-12-25" @default.
- W4311376162 creator A5050624639 @default.
- W4311376162 creator A5055687071 @default.
- W4311376162 creator A5066948480 @default.
- W4311376162 date "2022-12-12" @default.
- W4311376162 modified "2023-09-30" @default.
- W4311376162 title "Detecting Photovoltaic Installations in Diverse Landscapes Using Open Multi-Source Remote Sensing Data" @default.
- W4311376162 cites W1772504446 @default.
- W4311376162 cites W1984093344 @default.
- W4311376162 cites W1984670836 @default.
- W4311376162 cites W2044465660 @default.
- W4311376162 cites W2044609898 @default.
- W4311376162 cites W2056435747 @default.
- W4311376162 cites W2059432853 @default.
- W4311376162 cites W2063623478 @default.
- W4311376162 cites W2074119918 @default.
- W4311376162 cites W2075722067 @default.
- W4311376162 cites W2091793895 @default.
- W4311376162 cites W2101678239 @default.
- W4311376162 cites W2111482234 @default.
- W4311376162 cites W2119760459 @default.
- W4311376162 cites W2261059368 @default.
- W4311376162 cites W2394812591 @default.
- W4311376162 cites W2494424066 @default.
- W4311376162 cites W2591436041 @default.
- W4311376162 cites W2784327149 @default.
- W4311376162 cites W2800297188 @default.
- W4311376162 cites W2800384134 @default.
- W4311376162 cites W2904145953 @default.
- W4311376162 cites W2911964244 @default.
- W4311376162 cites W2917830544 @default.
- W4311376162 cites W3023149825 @default.
- W4311376162 cites W3033364458 @default.
- W4311376162 cites W3037438353 @default.
- W4311376162 cites W3044408977 @default.
- W4311376162 cites W3171706320 @default.
- W4311376162 cites W3177478558 @default.
- W4311376162 cites W3199858483 @default.
- W4311376162 cites W3207969003 @default.
- W4311376162 cites W3208854778 @default.
- W4311376162 cites W4214547333 @default.
- W4311376162 cites W4214579263 @default.
- W4311376162 cites W4214816907 @default.
- W4311376162 cites W4220769658 @default.
- W4311376162 cites W4281488225 @default.
- W4311376162 cites W4281738517 @default.
- W4311376162 cites W4289519097 @default.
- W4311376162 cites W4292093001 @default.
- W4311376162 cites W4293230359 @default.
- W4311376162 cites W4293661149 @default.
- W4311376162 cites W4308113100 @default.
- W4311376162 cites W4312271587 @default.
- W4311376162 doi "https://doi.org/10.3390/rs14246296" @default.
- W4311376162 hasPublicationYear "2022" @default.
- W4311376162 type Work @default.
- W4311376162 citedByCount "1" @default.
- W4311376162 countsByYear W43113761622023 @default.
- W4311376162 crossrefType "journal-article" @default.
- W4311376162 hasAuthorship W4311376162A5050624639 @default.
- W4311376162 hasAuthorship W4311376162A5055687071 @default.
- W4311376162 hasAuthorship W4311376162A5066948480 @default.
- W4311376162 hasBestOaLocation W43113761621 @default.
- W4311376162 hasConcept C119599485 @default.
- W4311376162 hasConcept C119857082 @default.
- W4311376162 hasConcept C127413603 @default.
- W4311376162 hasConcept C147176958 @default.
- W4311376162 hasConcept C154945302 @default.
- W4311376162 hasConcept C163864269 @default.
- W4311376162 hasConcept C169258074 @default.
- W4311376162 hasConcept C188573790 @default.
- W4311376162 hasConcept C205649164 @default.
- W4311376162 hasConcept C2780648208 @default.
- W4311376162 hasConcept C39432304 @default.
- W4311376162 hasConcept C41008148 @default.
- W4311376162 hasConcept C41291067 @default.
- W4311376162 hasConcept C4792198 @default.
- W4311376162 hasConcept C62649853 @default.
- W4311376162 hasConcept C95623464 @default.
- W4311376162 hasConceptScore W4311376162C119599485 @default.
- W4311376162 hasConceptScore W4311376162C119857082 @default.
- W4311376162 hasConceptScore W4311376162C127413603 @default.
- W4311376162 hasConceptScore W4311376162C147176958 @default.
- W4311376162 hasConceptScore W4311376162C154945302 @default.
- W4311376162 hasConceptScore W4311376162C163864269 @default.
- W4311376162 hasConceptScore W4311376162C169258074 @default.
- W4311376162 hasConceptScore W4311376162C188573790 @default.
- W4311376162 hasConceptScore W4311376162C205649164 @default.
- W4311376162 hasConceptScore W4311376162C2780648208 @default.
- W4311376162 hasConceptScore W4311376162C39432304 @default.
- W4311376162 hasConceptScore W4311376162C41008148 @default.
- W4311376162 hasConceptScore W4311376162C41291067 @default.
- W4311376162 hasConceptScore W4311376162C4792198 @default.
- W4311376162 hasConceptScore W4311376162C62649853 @default.
- W4311376162 hasConceptScore W4311376162C95623464 @default.
- W4311376162 hasFunder F4320322769 @default.
- W4311376162 hasIssue "24" @default.
- W4311376162 hasLocation W43113761621 @default.