Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311377412> ?p ?o ?g. }
- W4311377412 endingPage "12794" @default.
- W4311377412 startingPage "12794" @default.
- W4311377412 abstract "As a result of hardware resource constraints, it is difficult to obtain medical images with a sufficient resolution to diagnose small lesions. Recently, super-resolution (SR) was introduced into the field of medicine to enhance and restore medical image details so as to help doctors make more accurate diagnoses of lesions. High-frequency information enhances the accuracy of the image reconstruction, which is demonstrated by deep SR networks. However, deep networks are not applicable to resource-constrained medical devices because they have too many parameters, which requires a lot of memory and higher processor computing power. For this reason, a lightweight SR network that demonstrates good performance is needed to improve the resolution of medical images. A feedback mechanism enables the previous layers to perceive high-frequency information of the latter layers, but no new parameters are introduced, which is rarely used in lightweight networks. Therefore, in this work, a lightweight dual mutual-feedback network (DMFN) is proposed for medical image super-resolution, which contains two back-projection units that operate in a dual mutual-feedback manner. The features generated by the up-projection unit are fed back into the down-projection unit and, simultaneously, the features generated by the down-projection unit are fed back into the up-projection unit. Moreover, a contrast-enhanced residual block (CRB) is proposed as each cell block used in projection units, which enhances the pixel contrast in the channel and spatial dimensions. Finally, we designed a unity feedback to down-sample the SR result as the inverse process of SR. Furthermore, we compared it with the input LR to narrow the solution space of the SR function. The final ablation studies and comparison results show that our DMFN performs well without utilizing a large amount of computing resources. Thus, it can be used in resource-constrained medical devices to obtain medical images with better resolutions." @default.
- W4311377412 created "2022-12-25" @default.
- W4311377412 creator A5012022141 @default.
- W4311377412 creator A5020929631 @default.
- W4311377412 creator A5047734972 @default.
- W4311377412 creator A5060431284 @default.
- W4311377412 creator A5063052790 @default.
- W4311377412 creator A5067688031 @default.
- W4311377412 date "2022-12-13" @default.
- W4311377412 modified "2023-10-04" @default.
- W4311377412 title "Lightweight Dual Mutual-Feedback Network for Artificial Intelligence in Medical Image Super-Resolution" @default.
- W4311377412 cites W1992007613 @default.
- W4311377412 cites W2016598597 @default.
- W4311377412 cites W2047920195 @default.
- W4311377412 cites W2160065436 @default.
- W4311377412 cites W2194775991 @default.
- W4311377412 cites W2214802144 @default.
- W4311377412 cites W2242218935 @default.
- W4311377412 cites W2263468737 @default.
- W4311377412 cites W2476548250 @default.
- W4311377412 cites W2503339013 @default.
- W4311377412 cites W2607041014 @default.
- W4311377412 cites W2709402577 @default.
- W4311377412 cites W2741137940 @default.
- W4311377412 cites W2747898905 @default.
- W4311377412 cites W2752782242 @default.
- W4311377412 cites W2780544323 @default.
- W4311377412 cites W2799120945 @default.
- W4311377412 cites W2866634454 @default.
- W4311377412 cites W2884585870 @default.
- W4311377412 cites W2902874468 @default.
- W4311377412 cites W2963091558 @default.
- W4311377412 cites W2963372104 @default.
- W4311377412 cites W2963474899 @default.
- W4311377412 cites W2963610452 @default.
- W4311377412 cites W2963729050 @default.
- W4311377412 cites W2964125708 @default.
- W4311377412 cites W2964277374 @default.
- W4311377412 cites W2979704456 @default.
- W4311377412 cites W3026014384 @default.
- W4311377412 cites W3105328221 @default.
- W4311377412 cites W4255779515 @default.
- W4311377412 cites W54257720 @default.
- W4311377412 doi "https://doi.org/10.3390/app122412794" @default.
- W4311377412 hasPublicationYear "2022" @default.
- W4311377412 type Work @default.
- W4311377412 citedByCount "1" @default.
- W4311377412 countsByYear W43113774122023 @default.
- W4311377412 crossrefType "journal-article" @default.
- W4311377412 hasAuthorship W4311377412A5012022141 @default.
- W4311377412 hasAuthorship W4311377412A5020929631 @default.
- W4311377412 hasAuthorship W4311377412A5047734972 @default.
- W4311377412 hasAuthorship W4311377412A5060431284 @default.
- W4311377412 hasAuthorship W4311377412A5063052790 @default.
- W4311377412 hasAuthorship W4311377412A5067688031 @default.
- W4311377412 hasBestOaLocation W43113774121 @default.
- W4311377412 hasConcept C111919701 @default.
- W4311377412 hasConcept C11413529 @default.
- W4311377412 hasConcept C124952713 @default.
- W4311377412 hasConcept C138268822 @default.
- W4311377412 hasConcept C142362112 @default.
- W4311377412 hasConcept C142724271 @default.
- W4311377412 hasConcept C154945302 @default.
- W4311377412 hasConcept C160633673 @default.
- W4311377412 hasConcept C2524010 @default.
- W4311377412 hasConcept C2777210771 @default.
- W4311377412 hasConcept C2780980858 @default.
- W4311377412 hasConcept C31972630 @default.
- W4311377412 hasConcept C33923547 @default.
- W4311377412 hasConcept C41008148 @default.
- W4311377412 hasConcept C534262118 @default.
- W4311377412 hasConcept C57493831 @default.
- W4311377412 hasConcept C71924100 @default.
- W4311377412 hasConcept C98045186 @default.
- W4311377412 hasConceptScore W4311377412C111919701 @default.
- W4311377412 hasConceptScore W4311377412C11413529 @default.
- W4311377412 hasConceptScore W4311377412C124952713 @default.
- W4311377412 hasConceptScore W4311377412C138268822 @default.
- W4311377412 hasConceptScore W4311377412C142362112 @default.
- W4311377412 hasConceptScore W4311377412C142724271 @default.
- W4311377412 hasConceptScore W4311377412C154945302 @default.
- W4311377412 hasConceptScore W4311377412C160633673 @default.
- W4311377412 hasConceptScore W4311377412C2524010 @default.
- W4311377412 hasConceptScore W4311377412C2777210771 @default.
- W4311377412 hasConceptScore W4311377412C2780980858 @default.
- W4311377412 hasConceptScore W4311377412C31972630 @default.
- W4311377412 hasConceptScore W4311377412C33923547 @default.
- W4311377412 hasConceptScore W4311377412C41008148 @default.
- W4311377412 hasConceptScore W4311377412C534262118 @default.
- W4311377412 hasConceptScore W4311377412C57493831 @default.
- W4311377412 hasConceptScore W4311377412C71924100 @default.
- W4311377412 hasConceptScore W4311377412C98045186 @default.
- W4311377412 hasIssue "24" @default.
- W4311377412 hasLocation W43113774121 @default.
- W4311377412 hasLocation W43113774122 @default.
- W4311377412 hasOpenAccess W4311377412 @default.
- W4311377412 hasPrimaryLocation W43113774121 @default.
- W4311377412 hasRelatedWork W121273120 @default.