Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311378251> ?p ?o ?g. }
- W4311378251 endingPage "665" @default.
- W4311378251 startingPage "657" @default.
- W4311378251 abstract "Machine learning (ML) models for skin cancer recognition may have variable performance across different skin phototypes and skin cancer types. Overall performance metrics alone are insufficient to detect poor subgroup performance. We aimed (1) to assess whether studies of ML models reported results separately for different skin phototypes and rarer skin cancers, and (2) to graphically represent the skin cancer training datasets used by current ML models. In this systematic review, we searched PubMed, Embase and CENTRAL. We included all studies in medical journals assessing an ML technique for skin cancer diagnosis that used clinical or dermoscopic images from 1 January 2012 to 22 September 2021. No language restrictions were applied. We considered rarer skin cancers to be skin cancers other than pigmented melanoma, basal cell carcinoma and squamous cell carcinoma. We identified 114 studies for inclusion. Rarer skin cancers were included by 8/114 studies (7.0%), and results for a rarer skin cancer were reported separately in 1/114 studies (0.9%). Performance was reported across all skin phototypes in 1/114 studies (0.9%), but performance was uncertain in skin phototypes I and VI from minimal representation of the skin phototypes in the test dataset (9/3756 and 1/3756, respectively). For training datasets, although public datasets were most frequently used, with the most widely used being the International Skin Imaging Collaboration (ISIC) archive (65/114 studies, 57.0%), the largest datasets were private. Our review identified that most ML models did not report performance separately for rarer skin cancers and different skin phototypes. A degree of variability in ML model performance across subgroups is expected, but the current lack of transparency is not justifiable and risks models being used inappropriately in populations in whom accuracy is low." @default.
- W4311378251 created "2022-12-25" @default.
- W4311378251 creator A5018461350 @default.
- W4311378251 creator A5060322433 @default.
- W4311378251 creator A5075079689 @default.
- W4311378251 creator A5082922005 @default.
- W4311378251 creator A5085014809 @default.
- W4311378251 creator A5088035087 @default.
- W4311378251 date "2023-01-02" @default.
- W4311378251 modified "2023-09-30" @default.
- W4311378251 title "Determining the clinical applicability of machine learning models through assessment of reporting across skin phototypes and rarer skin cancer types: A systematic review" @default.
- W4311378251 cites W2134833483 @default.
- W4311378251 cites W2559090303 @default.
- W4311378251 cites W2581082771 @default.
- W4311378251 cites W2786147899 @default.
- W4311378251 cites W2806853752 @default.
- W4311378251 cites W2883147591 @default.
- W4311378251 cites W2886283492 @default.
- W4311378251 cites W2891858760 @default.
- W4311378251 cites W2903060508 @default.
- W4311378251 cites W2959113037 @default.
- W4311378251 cites W2969881216 @default.
- W4311378251 cites W2972754417 @default.
- W4311378251 cites W2993820249 @default.
- W4311378251 cites W2994958466 @default.
- W4311378251 cites W3000396219 @default.
- W4311378251 cites W3001618351 @default.
- W4311378251 cites W3005090711 @default.
- W4311378251 cites W3011721937 @default.
- W4311378251 cites W3012711637 @default.
- W4311378251 cites W3014403957 @default.
- W4311378251 cites W3016970897 @default.
- W4311378251 cites W3046605870 @default.
- W4311378251 cites W3074784024 @default.
- W4311378251 cites W3092053493 @default.
- W4311378251 cites W3105070630 @default.
- W4311378251 cites W3130244078 @default.
- W4311378251 cites W3177944555 @default.
- W4311378251 cites W3184097711 @default.
- W4311378251 cites W3186907113 @default.
- W4311378251 cites W3198806597 @default.
- W4311378251 cites W3199500316 @default.
- W4311378251 cites W3199802323 @default.
- W4311378251 cites W3206804331 @default.
- W4311378251 cites W3210506295 @default.
- W4311378251 cites W4205967793 @default.
- W4311378251 cites W4206563428 @default.
- W4311378251 cites W4223506650 @default.
- W4311378251 cites W4224242326 @default.
- W4311378251 cites W4226369230 @default.
- W4311378251 cites W4287204861 @default.
- W4311378251 cites W4288359825 @default.
- W4311378251 cites W4290852327 @default.
- W4311378251 cites W4292136262 @default.
- W4311378251 cites W4308264370 @default.
- W4311378251 doi "https://doi.org/10.1111/jdv.18814" @default.
- W4311378251 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36514990" @default.
- W4311378251 hasPublicationYear "2023" @default.
- W4311378251 type Work @default.
- W4311378251 citedByCount "0" @default.
- W4311378251 crossrefType "journal-article" @default.
- W4311378251 hasAuthorship W4311378251A5018461350 @default.
- W4311378251 hasAuthorship W4311378251A5060322433 @default.
- W4311378251 hasAuthorship W4311378251A5075079689 @default.
- W4311378251 hasAuthorship W4311378251A5082922005 @default.
- W4311378251 hasAuthorship W4311378251A5085014809 @default.
- W4311378251 hasAuthorship W4311378251A5088035087 @default.
- W4311378251 hasBestOaLocation W43113782511 @default.
- W4311378251 hasConcept C121608353 @default.
- W4311378251 hasConcept C126322002 @default.
- W4311378251 hasConcept C142724271 @default.
- W4311378251 hasConcept C16005928 @default.
- W4311378251 hasConcept C2777658100 @default.
- W4311378251 hasConcept C2777789703 @default.
- W4311378251 hasConcept C2778804307 @default.
- W4311378251 hasConcept C2780576536 @default.
- W4311378251 hasConcept C3019992690 @default.
- W4311378251 hasConcept C502942594 @default.
- W4311378251 hasConcept C71924100 @default.
- W4311378251 hasConceptScore W4311378251C121608353 @default.
- W4311378251 hasConceptScore W4311378251C126322002 @default.
- W4311378251 hasConceptScore W4311378251C142724271 @default.
- W4311378251 hasConceptScore W4311378251C16005928 @default.
- W4311378251 hasConceptScore W4311378251C2777658100 @default.
- W4311378251 hasConceptScore W4311378251C2777789703 @default.
- W4311378251 hasConceptScore W4311378251C2778804307 @default.
- W4311378251 hasConceptScore W4311378251C2780576536 @default.
- W4311378251 hasConceptScore W4311378251C3019992690 @default.
- W4311378251 hasConceptScore W4311378251C502942594 @default.
- W4311378251 hasConceptScore W4311378251C71924100 @default.
- W4311378251 hasIssue "4" @default.
- W4311378251 hasLocation W43113782511 @default.
- W4311378251 hasLocation W43113782512 @default.
- W4311378251 hasOpenAccess W4311378251 @default.
- W4311378251 hasPrimaryLocation W43113782511 @default.
- W4311378251 hasRelatedWork W102742756 @default.
- W4311378251 hasRelatedWork W1994913176 @default.
- W4311378251 hasRelatedWork W2401069336 @default.