Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311387144> ?p ?o ?g. }
- W4311387144 endingPage "2088" @default.
- W4311387144 startingPage "2088" @default.
- W4311387144 abstract "Proper delineation of both target volumes and organs at risk is a crucial step in the radiation therapy workflow. This process is normally carried out manually by medical doctors, hence demanding timewise. To improve efficiency, auto-contouring methods have been proposed. We assessed a specific commercial software to investigate its impact on the radiotherapy workflow on four specific disease sites: head and neck, prostate, breast, and rectum. For the present study, we used a commercial deep learning-based auto-segmentation software, namely Limbus Contour (LC), Version 1.5.0 (Limbus AI Inc., Regina, SK, Canada). The software uses deep convolutional neural network models based on a U-net architecture, specific for each structure. Manual and automatic segmentation were compared on disease-specific organs at risk. Contouring time, geometrical performance (volume variation, Dice Similarity Coefficient—DSC, and center of mass shift), and dosimetric impact (DVH differences) were evaluated. With respect to time savings, the maximum advantage was seen in the setting of head and neck cancer with a 65%-time reduction. The average DSC was 0.72. The best agreement was found for lungs. Good results were highlighted for bladder, heart, and femoral heads. The most relevant dosimetric difference was in the rectal cancer case, where the mean volume covered by the 45 Gy isodose was 10.4 cm3 for manual contouring and 289.4 cm3 for automatic segmentation. Automatic contouring was able to significantly reduce the time required in the procedure, simplifying the workflow, and reducing interobserver variability. Its implementation was able to improve the radiation therapy workflow in our department." @default.
- W4311387144 created "2022-12-25" @default.
- W4311387144 creator A5009293356 @default.
- W4311387144 creator A5012228610 @default.
- W4311387144 creator A5019407140 @default.
- W4311387144 creator A5027049576 @default.
- W4311387144 creator A5027699779 @default.
- W4311387144 creator A5049179764 @default.
- W4311387144 creator A5063975197 @default.
- W4311387144 creator A5069620632 @default.
- W4311387144 creator A5074993216 @default.
- W4311387144 date "2022-12-13" @default.
- W4311387144 modified "2023-10-14" @default.
- W4311387144 title "Implementation of a Commercial Deep Learning-Based Auto Segmentation Software in Radiotherapy: Evaluation of Effectiveness and Impact on Workflow" @default.
- W4311387144 cites W1970659111 @default.
- W4311387144 cites W1987869189 @default.
- W4311387144 cites W2016980154 @default.
- W4311387144 cites W2065493387 @default.
- W4311387144 cites W2083927153 @default.
- W4311387144 cites W2107595635 @default.
- W4311387144 cites W2107924942 @default.
- W4311387144 cites W2112884386 @default.
- W4311387144 cites W2119018166 @default.
- W4311387144 cites W2123312079 @default.
- W4311387144 cites W2123835357 @default.
- W4311387144 cites W2148754315 @default.
- W4311387144 cites W2560725027 @default.
- W4311387144 cites W2622196022 @default.
- W4311387144 cites W2757454662 @default.
- W4311387144 cites W2773960327 @default.
- W4311387144 cites W2945968958 @default.
- W4311387144 cites W2986021933 @default.
- W4311387144 cites W3037430895 @default.
- W4311387144 cites W3082041099 @default.
- W4311387144 cites W3159307920 @default.
- W4311387144 cites W3168061551 @default.
- W4311387144 cites W3169638230 @default.
- W4311387144 cites W4287832092 @default.
- W4311387144 cites W870279127 @default.
- W4311387144 doi "https://doi.org/10.3390/life12122088" @default.
- W4311387144 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36556455" @default.
- W4311387144 hasPublicationYear "2022" @default.
- W4311387144 type Work @default.
- W4311387144 citedByCount "1" @default.
- W4311387144 countsByYear W43113871442023 @default.
- W4311387144 crossrefType "journal-article" @default.
- W4311387144 hasAuthorship W4311387144A5009293356 @default.
- W4311387144 hasAuthorship W4311387144A5012228610 @default.
- W4311387144 hasAuthorship W4311387144A5019407140 @default.
- W4311387144 hasAuthorship W4311387144A5027049576 @default.
- W4311387144 hasAuthorship W4311387144A5027699779 @default.
- W4311387144 hasAuthorship W4311387144A5049179764 @default.
- W4311387144 hasAuthorship W4311387144A5063975197 @default.
- W4311387144 hasAuthorship W4311387144A5069620632 @default.
- W4311387144 hasAuthorship W4311387144A5074993216 @default.
- W4311387144 hasBestOaLocation W43113871441 @default.
- W4311387144 hasConcept C108583219 @default.
- W4311387144 hasConcept C121684516 @default.
- W4311387144 hasConcept C126838900 @default.
- W4311387144 hasConcept C154945302 @default.
- W4311387144 hasConcept C177212765 @default.
- W4311387144 hasConcept C199360897 @default.
- W4311387144 hasConcept C2777904410 @default.
- W4311387144 hasConcept C2779104521 @default.
- W4311387144 hasConcept C41008148 @default.
- W4311387144 hasConcept C509974204 @default.
- W4311387144 hasConcept C71924100 @default.
- W4311387144 hasConcept C77088390 @default.
- W4311387144 hasConcept C81363708 @default.
- W4311387144 hasConcept C89600930 @default.
- W4311387144 hasConceptScore W4311387144C108583219 @default.
- W4311387144 hasConceptScore W4311387144C121684516 @default.
- W4311387144 hasConceptScore W4311387144C126838900 @default.
- W4311387144 hasConceptScore W4311387144C154945302 @default.
- W4311387144 hasConceptScore W4311387144C177212765 @default.
- W4311387144 hasConceptScore W4311387144C199360897 @default.
- W4311387144 hasConceptScore W4311387144C2777904410 @default.
- W4311387144 hasConceptScore W4311387144C2779104521 @default.
- W4311387144 hasConceptScore W4311387144C41008148 @default.
- W4311387144 hasConceptScore W4311387144C509974204 @default.
- W4311387144 hasConceptScore W4311387144C71924100 @default.
- W4311387144 hasConceptScore W4311387144C77088390 @default.
- W4311387144 hasConceptScore W4311387144C81363708 @default.
- W4311387144 hasConceptScore W4311387144C89600930 @default.
- W4311387144 hasIssue "12" @default.
- W4311387144 hasLocation W43113871441 @default.
- W4311387144 hasLocation W43113871442 @default.
- W4311387144 hasLocation W43113871443 @default.
- W4311387144 hasLocation W43113871444 @default.
- W4311387144 hasOpenAccess W4311387144 @default.
- W4311387144 hasPrimaryLocation W43113871441 @default.
- W4311387144 hasRelatedWork W2731899572 @default.
- W4311387144 hasRelatedWork W2790662084 @default.
- W4311387144 hasRelatedWork W2999805992 @default.
- W4311387144 hasRelatedWork W3116150086 @default.
- W4311387144 hasRelatedWork W3133861977 @default.
- W4311387144 hasRelatedWork W3206966550 @default.
- W4311387144 hasRelatedWork W4200173597 @default.