Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311387216> ?p ?o ?g. }
- W4311387216 endingPage "29" @default.
- W4311387216 startingPage "1" @default.
- W4311387216 abstract "In this investigation, intelligent predictive stochastic computing is presented by exploitation of artificial neural networks Levenberg-Marquardt approach (ANNs-LMA) to analyze the dynamics of a nonlinear differential delay computer virus (DCV) model. The governing differential delay system with four classes representation with nonlinear delayed ordinary differential equations comprising of uninfected computers, latently infected computers, breaking out computers and computers having antivirus ability. The Adams approach for numerical solution is applied to produce the reference dataset by the variation in recruiting and detaching rate for both old as well as new PCs, bilinear transmission rate amongst healthy versus latently infected PCs, rate of latently infected PCs that break out, the rate for which breaking out PCs obtain antiviral ability, the rate for which antimalware PCs defeat all kind of viruses and delay with respect to time. The design ANNs-LMA is utilized to determine the approximate solution of the nonlinear DCV model by arbitrarily dividing the created dataset for training, testing as well as validation samples during learning of the networks. Negligible absolute errors, mean square errors, and relatively close to perfect modeling with regression metrics endorsed the strength, viability and reliability of the design ANNs-LMA for solving the nonlinear DCV models." @default.
- W4311387216 created "2022-12-25" @default.
- W4311387216 creator A5044383953 @default.
- W4311387216 creator A5048315421 @default.
- W4311387216 creator A5061378172 @default.
- W4311387216 creator A5064574696 @default.
- W4311387216 creator A5074368763 @default.
- W4311387216 creator A5080585392 @default.
- W4311387216 date "2022-12-13" @default.
- W4311387216 modified "2023-10-18" @default.
- W4311387216 title "Intelligent predictive stochastic computing for nonlinear differential delay computer virus model" @default.
- W4311387216 cites W2803166794 @default.
- W4311387216 cites W2890165747 @default.
- W4311387216 cites W2942929347 @default.
- W4311387216 cites W2943243495 @default.
- W4311387216 cites W2980113959 @default.
- W4311387216 cites W2981413611 @default.
- W4311387216 cites W2986593044 @default.
- W4311387216 cites W2996293619 @default.
- W4311387216 cites W2996562280 @default.
- W4311387216 cites W2997121834 @default.
- W4311387216 cites W3004020995 @default.
- W4311387216 cites W3005664637 @default.
- W4311387216 cites W3007733934 @default.
- W4311387216 cites W3009315908 @default.
- W4311387216 cites W3012524380 @default.
- W4311387216 cites W3014099641 @default.
- W4311387216 cites W3021667610 @default.
- W4311387216 cites W3023510196 @default.
- W4311387216 cites W3027817760 @default.
- W4311387216 cites W3037975788 @default.
- W4311387216 cites W3047626998 @default.
- W4311387216 cites W3081416707 @default.
- W4311387216 cites W3084527880 @default.
- W4311387216 cites W3091827982 @default.
- W4311387216 cites W3097546015 @default.
- W4311387216 cites W3109534075 @default.
- W4311387216 cites W3114844635 @default.
- W4311387216 cites W3117296254 @default.
- W4311387216 cites W3126665935 @default.
- W4311387216 cites W3127748774 @default.
- W4311387216 cites W3147316640 @default.
- W4311387216 cites W3151238187 @default.
- W4311387216 cites W3159178679 @default.
- W4311387216 cites W3161414257 @default.
- W4311387216 cites W3167604196 @default.
- W4311387216 cites W3167787874 @default.
- W4311387216 cites W3183083350 @default.
- W4311387216 cites W3186773494 @default.
- W4311387216 cites W3198801874 @default.
- W4311387216 cites W3199584312 @default.
- W4311387216 cites W3200205608 @default.
- W4311387216 cites W3204031043 @default.
- W4311387216 cites W3207537421 @default.
- W4311387216 cites W3208320976 @default.
- W4311387216 cites W3211643838 @default.
- W4311387216 cites W3216518879 @default.
- W4311387216 cites W3216939071 @default.
- W4311387216 cites W4200169084 @default.
- W4311387216 cites W4200374680 @default.
- W4311387216 cites W4200536689 @default.
- W4311387216 cites W4205751650 @default.
- W4311387216 cites W4206633680 @default.
- W4311387216 cites W4206831604 @default.
- W4311387216 cites W4210413309 @default.
- W4311387216 cites W4210415824 @default.
- W4311387216 cites W4210723093 @default.
- W4311387216 cites W4211055747 @default.
- W4311387216 cites W4212918105 @default.
- W4311387216 cites W4212960790 @default.
- W4311387216 cites W4213012450 @default.
- W4311387216 cites W4213056330 @default.
- W4311387216 cites W4213226290 @default.
- W4311387216 cites W4220919169 @default.
- W4311387216 doi "https://doi.org/10.1080/17455030.2022.2155327" @default.
- W4311387216 hasPublicationYear "2022" @default.
- W4311387216 type Work @default.
- W4311387216 citedByCount "5" @default.
- W4311387216 countsByYear W43113872162022 @default.
- W4311387216 countsByYear W43113872162023 @default.
- W4311387216 crossrefType "journal-article" @default.
- W4311387216 hasAuthorship W4311387216A5044383953 @default.
- W4311387216 hasAuthorship W4311387216A5048315421 @default.
- W4311387216 hasAuthorship W4311387216A5061378172 @default.
- W4311387216 hasAuthorship W4311387216A5064574696 @default.
- W4311387216 hasAuthorship W4311387216A5074368763 @default.
- W4311387216 hasAuthorship W4311387216A5080585392 @default.
- W4311387216 hasConcept C11413529 @default.
- W4311387216 hasConcept C121332964 @default.
- W4311387216 hasConcept C134306372 @default.
- W4311387216 hasConcept C147504518 @default.
- W4311387216 hasConcept C154945302 @default.
- W4311387216 hasConcept C158622935 @default.
- W4311387216 hasConcept C163258240 @default.
- W4311387216 hasConcept C205203396 @default.
- W4311387216 hasConcept C2775924081 @default.
- W4311387216 hasConcept C28826006 @default.
- W4311387216 hasConcept C31972630 @default.