Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311387501> ?p ?o ?g. }
- W4311387501 endingPage "169" @default.
- W4311387501 startingPage "169" @default.
- W4311387501 abstract "The present study focused on the design of geothermal energy piles based on cone penetration test (CPT) data, which was obtained from the Perniö test site in Finland. The geothermal piles are heat-capacity systems that provide both a supply of energy and structural support to civil engineering structures. In geotechnical engineering, it is necessary to provide an efficient, reliable, and precise method for calculating the group capacity of the energy piles. In this research, the first aim is to determine the most significant variables required to calculate the energy pile capacity, i.e., the pile length (L), pile diameter (D), average cone resistance (qc0), minimum cone resistance (qc1), average of minimum cone resistance (qc2), cone resistance (qc), Young’s modulus (E), coefficient of thermal expansion (αc), and temperature change (ΔT). The values of qc0, qc1, qc2, qc, and E are then employed as model inputs in soft computing algorithms, which includes random forest (RF), the support vector machine (SVM), the gradient boosting machine (GBM), and extreme gradient boosting (XGB) in order to predict the pile group capacity. The developed soft computing models were then evaluated by using several statistical criteria, and the lowest system error with the best performance was attained by the GBM technique. The performance parameters, such as the coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), mean biased error (MBE), median absolute deviation (MAD), weighted mean absolute percentage error (WMAPE), expanded uncertainty (U95), global performance indicator (GPI), Theil’s inequality index (TIC), and the index of agreement (IA) values of the testing data for the GBM models are 0.80, 0.10, 0.08, −0.01, 0.06, 0.21, 0.28, −0.00, 0.11, and 0.94, respectively, demonstrating the strength and capacity of this soft computing algorithm in evaluating the pile’s group capacity for the energy pile. Rank analysis, error matrix, Taylor’s diagram, and the reliability index have all been developed to compare the proposed model’s accuracy. The results of this research also show that the GBM model developed is better at estimating the group capacity of energy piles than the other soft computing models." @default.
- W4311387501 created "2022-12-25" @default.
- W4311387501 creator A5004350213 @default.
- W4311387501 creator A5059557188 @default.
- W4311387501 date "2022-12-12" @default.
- W4311387501 modified "2023-09-30" @default.
- W4311387501 title "Design of an Energy Pile Based on CPT Data Using Soft Computing Techniques" @default.
- W4311387501 cites W1469381315 @default.
- W4311387501 cites W1563088657 @default.
- W4311387501 cites W1973359767 @default.
- W4311387501 cites W1976405057 @default.
- W4311387501 cites W1977981548 @default.
- W4311387501 cites W1980788744 @default.
- W4311387501 cites W1988121422 @default.
- W4311387501 cites W1991637997 @default.
- W4311387501 cites W1995500411 @default.
- W4311387501 cites W1997052242 @default.
- W4311387501 cites W1997737317 @default.
- W4311387501 cites W2006538047 @default.
- W4311387501 cites W2009052959 @default.
- W4311387501 cites W2018310735 @default.
- W4311387501 cites W2019986870 @default.
- W4311387501 cites W2031493359 @default.
- W4311387501 cites W2037931255 @default.
- W4311387501 cites W2039873724 @default.
- W4311387501 cites W2040954461 @default.
- W4311387501 cites W2044864109 @default.
- W4311387501 cites W2046421825 @default.
- W4311387501 cites W2048275366 @default.
- W4311387501 cites W2049605085 @default.
- W4311387501 cites W2051607409 @default.
- W4311387501 cites W2051730865 @default.
- W4311387501 cites W2062174566 @default.
- W4311387501 cites W2067313411 @default.
- W4311387501 cites W2068046269 @default.
- W4311387501 cites W2080951891 @default.
- W4311387501 cites W2082103205 @default.
- W4311387501 cites W2094048915 @default.
- W4311387501 cites W2102148524 @default.
- W4311387501 cites W2116439621 @default.
- W4311387501 cites W2138909261 @default.
- W4311387501 cites W2139941099 @default.
- W4311387501 cites W2142833795 @default.
- W4311387501 cites W2151424261 @default.
- W4311387501 cites W2164063121 @default.
- W4311387501 cites W2584405772 @default.
- W4311387501 cites W2612748666 @default.
- W4311387501 cites W2792178685 @default.
- W4311387501 cites W2793997606 @default.
- W4311387501 cites W2910350413 @default.
- W4311387501 cites W2911964244 @default.
- W4311387501 cites W2920340791 @default.
- W4311387501 cites W2971706201 @default.
- W4311387501 cites W2979956032 @default.
- W4311387501 cites W2990990692 @default.
- W4311387501 cites W3007864378 @default.
- W4311387501 cites W3102476541 @default.
- W4311387501 cites W3210392423 @default.
- W4311387501 cites W4230674625 @default.
- W4311387501 cites W4239510810 @default.
- W4311387501 cites W4281657597 @default.
- W4311387501 cites W4281773448 @default.
- W4311387501 cites W4283214238 @default.
- W4311387501 cites W4294935201 @default.
- W4311387501 doi "https://doi.org/10.3390/infrastructures7120169" @default.
- W4311387501 hasPublicationYear "2022" @default.
- W4311387501 type Work @default.
- W4311387501 citedByCount "5" @default.
- W4311387501 countsByYear W43113875012023 @default.
- W4311387501 crossrefType "journal-article" @default.
- W4311387501 hasAuthorship W4311387501A5004350213 @default.
- W4311387501 hasAuthorship W4311387501A5059557188 @default.
- W4311387501 hasBestOaLocation W43113875011 @default.
- W4311387501 hasConcept C105795698 @default.
- W4311387501 hasConcept C11413529 @default.
- W4311387501 hasConcept C119560385 @default.
- W4311387501 hasConcept C12267149 @default.
- W4311387501 hasConcept C12302492 @default.
- W4311387501 hasConcept C127413603 @default.
- W4311387501 hasConcept C128990827 @default.
- W4311387501 hasConcept C139945424 @default.
- W4311387501 hasConcept C140073362 @default.
- W4311387501 hasConcept C150217764 @default.
- W4311387501 hasConcept C154945302 @default.
- W4311387501 hasConcept C176071119 @default.
- W4311387501 hasConcept C187320778 @default.
- W4311387501 hasConcept C33923547 @default.
- W4311387501 hasConcept C41008148 @default.
- W4311387501 hasConcept C50644808 @default.
- W4311387501 hasConceptScore W4311387501C105795698 @default.
- W4311387501 hasConceptScore W4311387501C11413529 @default.
- W4311387501 hasConceptScore W4311387501C119560385 @default.
- W4311387501 hasConceptScore W4311387501C12267149 @default.
- W4311387501 hasConceptScore W4311387501C12302492 @default.
- W4311387501 hasConceptScore W4311387501C127413603 @default.
- W4311387501 hasConceptScore W4311387501C128990827 @default.
- W4311387501 hasConceptScore W4311387501C139945424 @default.
- W4311387501 hasConceptScore W4311387501C140073362 @default.