Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311404634> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4311404634 endingPage "478" @default.
- W4311404634 startingPage "474" @default.
- W4311404634 abstract "The current state of news in the era of computers The news environment in the modern computer age The news environment in the modern computer age The news environment in the modern computer age. The news environment in the modern computer age Social media platforms have taken the role of the antiquated traditional print media as a part of the news ecosystem in the current computer era. False news is spread at an astounding velocity and scale because social media platforms allow us to consume news much more rapidly and with less restricted editing. According to recent research, several efficient methods for spotting fake news encrypt social context-level data and news content sequential neural networks using a unidirectional examination of the text sequence. In order to represent the pertinent information of false news and improve classification performance while capturing semantic and long-distance connections in sentences, a bidirectional training strategy is a necessity. Claim Analyzer is only a model for evaluating the veracity of claims made online The statements might either be True or False. Fake news is a kind of propaganda in which false information is knowingly disseminated via news organizations and/or social media platforms. It is crucial to create methods of spotting false news information since its spread can have detrimental effects, such as influencing elections and widening political rifts. BERT is intended to simultaneously condition on both left and right context in all layers in order to pre-train deep bidirectional representations from unlabeled text. Therefore, state-of-the-art models for a variety of tasks, including question answering and language inference, may be created using just one extra output layer to fine-tune the pre-trained BERT model without making significant task-specific architecture adjustments. By merging several parallel blocks of the single-layer deep Convolutional Neural Network (CNN)with the BERT and variable kernel sizes and filters, we propose a BERT-based (Bidirectional Encoder Representations from Transformers) deep learning technique. The biggest obstacle to natural language understanding is ambiguity, which may be handled with the help of this combination. When applied to huge datasets, our suggested model provides88% accuracy." @default.
- W4311404634 created "2022-12-26" @default.
- W4311404634 creator A5004592628 @default.
- W4311404634 creator A5004832306 @default.
- W4311404634 creator A5024565818 @default.
- W4311404634 creator A5055989727 @default.
- W4311404634 creator A5061409267 @default.
- W4311404634 creator A5090198442 @default.
- W4311404634 date "2022-12-14" @default.
- W4311404634 modified "2023-09-28" @default.
- W4311404634 title "Claim Analyzer : Evaluating Credibility of Data" @default.
- W4311404634 cites W2901308345 @default.
- W4311404634 cites W2955303243 @default.
- W4311404634 cites W2963416784 @default.
- W4311404634 cites W2977526300 @default.
- W4311404634 cites W3021621101 @default.
- W4311404634 cites W3080295236 @default.
- W4311404634 cites W3135161617 @default.
- W4311404634 cites W4285317206 @default.
- W4311404634 doi "https://doi.org/10.48175/ijarsct-7713" @default.
- W4311404634 hasPublicationYear "2022" @default.
- W4311404634 type Work @default.
- W4311404634 citedByCount "0" @default.
- W4311404634 crossrefType "journal-article" @default.
- W4311404634 hasAuthorship W4311404634A5004592628 @default.
- W4311404634 hasAuthorship W4311404634A5004832306 @default.
- W4311404634 hasAuthorship W4311404634A5024565818 @default.
- W4311404634 hasAuthorship W4311404634A5055989727 @default.
- W4311404634 hasAuthorship W4311404634A5061409267 @default.
- W4311404634 hasAuthorship W4311404634A5090198442 @default.
- W4311404634 hasBestOaLocation W43114046341 @default.
- W4311404634 hasConcept C136764020 @default.
- W4311404634 hasConcept C166957645 @default.
- W4311404634 hasConcept C17744445 @default.
- W4311404634 hasConcept C199539241 @default.
- W4311404634 hasConcept C2522767166 @default.
- W4311404634 hasConcept C2779343474 @default.
- W4311404634 hasConcept C2780224610 @default.
- W4311404634 hasConcept C41008148 @default.
- W4311404634 hasConcept C518677369 @default.
- W4311404634 hasConcept C95457728 @default.
- W4311404634 hasConceptScore W4311404634C136764020 @default.
- W4311404634 hasConceptScore W4311404634C166957645 @default.
- W4311404634 hasConceptScore W4311404634C17744445 @default.
- W4311404634 hasConceptScore W4311404634C199539241 @default.
- W4311404634 hasConceptScore W4311404634C2522767166 @default.
- W4311404634 hasConceptScore W4311404634C2779343474 @default.
- W4311404634 hasConceptScore W4311404634C2780224610 @default.
- W4311404634 hasConceptScore W4311404634C41008148 @default.
- W4311404634 hasConceptScore W4311404634C518677369 @default.
- W4311404634 hasConceptScore W4311404634C95457728 @default.
- W4311404634 hasLocation W43114046341 @default.
- W4311404634 hasOpenAccess W4311404634 @default.
- W4311404634 hasPrimaryLocation W43114046341 @default.
- W4311404634 hasRelatedWork W1883425343 @default.
- W4311404634 hasRelatedWork W2029697730 @default.
- W4311404634 hasRelatedWork W2355320329 @default.
- W4311404634 hasRelatedWork W2366256714 @default.
- W4311404634 hasRelatedWork W2630393720 @default.
- W4311404634 hasRelatedWork W2748952813 @default.
- W4311404634 hasRelatedWork W2964738768 @default.
- W4311404634 hasRelatedWork W4294884240 @default.
- W4311404634 hasRelatedWork W4308915722 @default.
- W4311404634 hasRelatedWork W71409127 @default.
- W4311404634 isParatext "false" @default.
- W4311404634 isRetracted "false" @default.
- W4311404634 workType "article" @default.