Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311408172> ?p ?o ?g. }
- W4311408172 endingPage "21" @default.
- W4311408172 startingPage "1" @default.
- W4311408172 abstract "Summary Evolutionary transfer optimization (ETO) algorithms with the ability to learn from past tasks have made breakthroughs in more and more fields. When the experience embedded in the past optimization tasks is properly utilized, the search performance will be greatly improved compared to starting from scratch. Autoencoding evolutionary search (AEES) is an efficient ETO paradigm proposed in recent years. The solutions of each task are configured as input and output of a single-layer denoising autoencoder (DAE), and the across-problem mapping is established by minimizing the reconstruction error, which makes it possible to explicitly transfer the solutions across heterogeneous problems. However, despite the success of AEES, the population of the optimization task contains little information about the characteristics of the task and it is highly stochastic, especially in the early stages of searching. This restricts the effectiveness of the mapping constructed via AEES. On the other hand, most tasks do not save all candidate solutions in the search, which greatly limits the possibilities of traditional AEES applications; for example, well placement optimization (WPO) problems, which are a common engineering optimization problem in the oil industry. To overcome such limitations, a sequential ETO algorithm for WPO problems based on task characteristics and an autoencoder is developed in this paper. It uses the implicit relationship between reservoir characteristics and optimal well locations to learn from past tasks, and a mapping is calculated to transfer knowledge across tasks. The proposed algorithm aims to speed up the search for the optimal well locations and reduce the required time for WPO. The learned mapping is established by configuring the characteristics of past and current tasks as input and output of a single-layer DAE. The derived mapping holds a closed-form transformation matrix across heterogeneous tasks, and the optimal solution of the past task can be easily transferred to a dominant solution of the current task by matrix calculation, thus it will not bring much computational burden in the evolutionary search while improving search performance. Furthermore, according to the specific task, the construction scheme of the matrix of characteristics can be flexibly extended to achieve effective search enhancement. The comprehensive empirical studies of WPO and statistical analysis are carried out to verify the effectiveness." @default.
- W4311408172 created "2022-12-26" @default.
- W4311408172 creator A5003850660 @default.
- W4311408172 creator A5003943585 @default.
- W4311408172 creator A5022596740 @default.
- W4311408172 creator A5040469723 @default.
- W4311408172 creator A5050606600 @default.
- W4311408172 creator A5080439781 @default.
- W4311408172 creator A5090730101 @default.
- W4311408172 date "2022-12-01" @default.
- W4311408172 modified "2023-10-18" @default.
- W4311408172 title "An Evolutionary Sequential Transfer Optimization Algorithm for Well Placement Optimization Based on Task Characteristics" @default.
- W4311408172 cites W1901616594 @default.
- W4311408172 cites W1968535060 @default.
- W4311408172 cites W1969507043 @default.
- W4311408172 cites W1972393192 @default.
- W4311408172 cites W1975791498 @default.
- W4311408172 cites W1986211014 @default.
- W4311408172 cites W2025768430 @default.
- W4311408172 cites W2031801005 @default.
- W4311408172 cites W2032411249 @default.
- W4311408172 cites W2033652832 @default.
- W4311408172 cites W2051682049 @default.
- W4311408172 cites W2076063813 @default.
- W4311408172 cites W2102912701 @default.
- W4311408172 cites W2105217850 @default.
- W4311408172 cites W2122274805 @default.
- W4311408172 cites W2126105956 @default.
- W4311408172 cites W2129527459 @default.
- W4311408172 cites W2151838272 @default.
- W4311408172 cites W2152382740 @default.
- W4311408172 cites W2162021678 @default.
- W4311408172 cites W2210407830 @default.
- W4311408172 cites W2410677328 @default.
- W4311408172 cites W2535197026 @default.
- W4311408172 cites W2583496274 @default.
- W4311408172 cites W2585632407 @default.
- W4311408172 cites W2595502370 @default.
- W4311408172 cites W2894290879 @default.
- W4311408172 cites W2923639984 @default.
- W4311408172 cites W2972728064 @default.
- W4311408172 cites W2982701374 @default.
- W4311408172 cites W2991414568 @default.
- W4311408172 cites W2993018413 @default.
- W4311408172 cites W3007026013 @default.
- W4311408172 cites W3028539868 @default.
- W4311408172 cites W3035587041 @default.
- W4311408172 cites W3085063431 @default.
- W4311408172 cites W3111929660 @default.
- W4311408172 cites W3120732119 @default.
- W4311408172 cites W3125915499 @default.
- W4311408172 cites W3128260458 @default.
- W4311408172 cites W3130238944 @default.
- W4311408172 cites W3137454650 @default.
- W4311408172 cites W3201060374 @default.
- W4311408172 cites W4206424356 @default.
- W4311408172 cites W4210271172 @default.
- W4311408172 cites W4231109964 @default.
- W4311408172 cites W4235669948 @default.
- W4311408172 doi "https://doi.org/10.2118/212870-pa" @default.
- W4311408172 hasPublicationYear "2022" @default.
- W4311408172 type Work @default.
- W4311408172 citedByCount "0" @default.
- W4311408172 crossrefType "journal-article" @default.
- W4311408172 hasAuthorship W4311408172A5003850660 @default.
- W4311408172 hasAuthorship W4311408172A5003943585 @default.
- W4311408172 hasAuthorship W4311408172A5022596740 @default.
- W4311408172 hasAuthorship W4311408172A5040469723 @default.
- W4311408172 hasAuthorship W4311408172A5050606600 @default.
- W4311408172 hasAuthorship W4311408172A5080439781 @default.
- W4311408172 hasAuthorship W4311408172A5090730101 @default.
- W4311408172 hasConcept C101738243 @default.
- W4311408172 hasConcept C11413529 @default.
- W4311408172 hasConcept C119857082 @default.
- W4311408172 hasConcept C126255220 @default.
- W4311408172 hasConcept C127413603 @default.
- W4311408172 hasConcept C137836250 @default.
- W4311408172 hasConcept C154945302 @default.
- W4311408172 hasConcept C159149176 @default.
- W4311408172 hasConcept C201995342 @default.
- W4311408172 hasConcept C2780451532 @default.
- W4311408172 hasConcept C2987595161 @default.
- W4311408172 hasConcept C33923547 @default.
- W4311408172 hasConcept C41008148 @default.
- W4311408172 hasConcept C50644808 @default.
- W4311408172 hasConceptScore W4311408172C101738243 @default.
- W4311408172 hasConceptScore W4311408172C11413529 @default.
- W4311408172 hasConceptScore W4311408172C119857082 @default.
- W4311408172 hasConceptScore W4311408172C126255220 @default.
- W4311408172 hasConceptScore W4311408172C127413603 @default.
- W4311408172 hasConceptScore W4311408172C137836250 @default.
- W4311408172 hasConceptScore W4311408172C154945302 @default.
- W4311408172 hasConceptScore W4311408172C159149176 @default.
- W4311408172 hasConceptScore W4311408172C201995342 @default.
- W4311408172 hasConceptScore W4311408172C2780451532 @default.
- W4311408172 hasConceptScore W4311408172C2987595161 @default.
- W4311408172 hasConceptScore W4311408172C33923547 @default.
- W4311408172 hasConceptScore W4311408172C41008148 @default.