Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311421441> ?p ?o ?g. }
- W4311421441 endingPage "110010" @default.
- W4311421441 startingPage "110010" @default.
- W4311421441 abstract "Bearings are commonly used to reduce friction between moving parts. Bearings may fail due to lubrication failure, contamination, corrosion, and fatigue. To prevent bearing failures, it is important to predict the remaining useful life (RUL) of bearings. While many data-driven methods have been introduced, very few studies have considered the correlation of features at different time points, such a correlation could be used to identify and aggregate features at different time points for improving the robustness of predictive models. Moreover, many existing data-driven methods leverage neural networks with recurrent characteristics such as recurrent neural network (RNN) and long short term memory (LSTM). These methods are ineffective in processing long sequences and require longer training time due to the recurrent characteristics. To address these issues, a Siamese LSTM network is firstly introduced to classify degradation stages before predicting the RUL of bearings. Then we introduce a self-adaptive graph convolutional network (SAGCN) along with a self-attention mechanism in order to consider the correlation of features at different time points without using recurrent characteristics. Experimental results have demonstrated that the proposed method can accurately predict the RUL with a minimum average root mean squared error of 0.119, and outperforms existing data-driven methods, such as graph convolutional network, convolutional LSTM, convolutional neural network, and generative adversarial network." @default.
- W4311421441 created "2022-12-26" @default.
- W4311421441 creator A5021686212 @default.
- W4311421441 creator A5034019298 @default.
- W4311421441 creator A5076809463 @default.
- W4311421441 date "2023-04-01" @default.
- W4311421441 modified "2023-10-09" @default.
- W4311421441 title "Bearing remaining useful life prediction using self-adaptive graph convolutional networks with self-attention mechanism" @default.
- W4311421441 cites W2027764190 @default.
- W4311421441 cites W2035139964 @default.
- W4311421441 cites W2064323378 @default.
- W4311421441 cites W2064675550 @default.
- W4311421441 cites W2079473768 @default.
- W4311421441 cites W2099250634 @default.
- W4311421441 cites W2117227640 @default.
- W4311421441 cites W2158787690 @default.
- W4311421441 cites W2789811186 @default.
- W4311421441 cites W2799972844 @default.
- W4311421441 cites W2800911105 @default.
- W4311421441 cites W2898760173 @default.
- W4311421441 cites W2900438754 @default.
- W4311421441 cites W2900529838 @default.
- W4311421441 cites W2903722520 @default.
- W4311421441 cites W2904460913 @default.
- W4311421441 cites W2908441554 @default.
- W4311421441 cites W2946048316 @default.
- W4311421441 cites W2966813263 @default.
- W4311421441 cites W2971114125 @default.
- W4311421441 cites W2983199727 @default.
- W4311421441 cites W2997825250 @default.
- W4311421441 cites W3016665419 @default.
- W4311421441 cites W3017805480 @default.
- W4311421441 cites W3027664001 @default.
- W4311421441 cites W3033580259 @default.
- W4311421441 cites W3036868078 @default.
- W4311421441 cites W3045857695 @default.
- W4311421441 cites W3081571820 @default.
- W4311421441 cites W3110510730 @default.
- W4311421441 cites W3132015041 @default.
- W4311421441 cites W3132028006 @default.
- W4311421441 cites W3159011864 @default.
- W4311421441 cites W3166024687 @default.
- W4311421441 cites W3173071471 @default.
- W4311421441 cites W3178034484 @default.
- W4311421441 cites W3182330055 @default.
- W4311421441 cites W3196608054 @default.
- W4311421441 cites W3203050329 @default.
- W4311421441 cites W3205893516 @default.
- W4311421441 cites W4210257598 @default.
- W4311421441 cites W4224252567 @default.
- W4311421441 cites W4312805004 @default.
- W4311421441 doi "https://doi.org/10.1016/j.ymssp.2022.110010" @default.
- W4311421441 hasPublicationYear "2023" @default.
- W4311421441 type Work @default.
- W4311421441 citedByCount "8" @default.
- W4311421441 countsByYear W43114214412023 @default.
- W4311421441 crossrefType "journal-article" @default.
- W4311421441 hasAuthorship W4311421441A5021686212 @default.
- W4311421441 hasAuthorship W4311421441A5034019298 @default.
- W4311421441 hasAuthorship W4311421441A5076809463 @default.
- W4311421441 hasConcept C104317684 @default.
- W4311421441 hasConcept C119857082 @default.
- W4311421441 hasConcept C124101348 @default.
- W4311421441 hasConcept C132525143 @default.
- W4311421441 hasConcept C147168706 @default.
- W4311421441 hasConcept C153083717 @default.
- W4311421441 hasConcept C153180895 @default.
- W4311421441 hasConcept C154945302 @default.
- W4311421441 hasConcept C185592680 @default.
- W4311421441 hasConcept C41008148 @default.
- W4311421441 hasConcept C50644808 @default.
- W4311421441 hasConcept C55493867 @default.
- W4311421441 hasConcept C63479239 @default.
- W4311421441 hasConcept C80444323 @default.
- W4311421441 hasConcept C81363708 @default.
- W4311421441 hasConceptScore W4311421441C104317684 @default.
- W4311421441 hasConceptScore W4311421441C119857082 @default.
- W4311421441 hasConceptScore W4311421441C124101348 @default.
- W4311421441 hasConceptScore W4311421441C132525143 @default.
- W4311421441 hasConceptScore W4311421441C147168706 @default.
- W4311421441 hasConceptScore W4311421441C153083717 @default.
- W4311421441 hasConceptScore W4311421441C153180895 @default.
- W4311421441 hasConceptScore W4311421441C154945302 @default.
- W4311421441 hasConceptScore W4311421441C185592680 @default.
- W4311421441 hasConceptScore W4311421441C41008148 @default.
- W4311421441 hasConceptScore W4311421441C50644808 @default.
- W4311421441 hasConceptScore W4311421441C55493867 @default.
- W4311421441 hasConceptScore W4311421441C63479239 @default.
- W4311421441 hasConceptScore W4311421441C80444323 @default.
- W4311421441 hasConceptScore W4311421441C81363708 @default.
- W4311421441 hasLocation W43114214411 @default.
- W4311421441 hasOpenAccess W4311421441 @default.
- W4311421441 hasPrimaryLocation W43114214411 @default.
- W4311421441 hasRelatedWork W2767651786 @default.
- W4311421441 hasRelatedWork W2912288872 @default.
- W4311421441 hasRelatedWork W3021430260 @default.
- W4311421441 hasRelatedWork W3027997911 @default.
- W4311421441 hasRelatedWork W3203462485 @default.