Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311422092> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4311422092 endingPage "416" @default.
- W4311422092 startingPage "405" @default.
- W4311422092 abstract "Metal additive manufacturing (AM) involves complex multiscale and multiphysics processes. Physics-based modeling approaches to simulate such processes face challenges in their predictions due to the several time and length scales involved in the thermomechanical effects that are inherent in AM. Deep learning-based approaches have been recently explored to address this issue, as they have been shown to be capable of capturing highly nonlinear relations between input and output features. This investigation proposes the use of temporal convolutional networks (TCNs) for fast inferencing of thermal histories in AM processes. TCNs have been previously shown to be superior to other deep learning approaches while requiring less training time. A methodology, therefore, of using TCNs in thermal history predictions for the case of directed energy deposition (DED) is presented herein. The results were found to be of comparable accuracy to other deep learning methods that have been proposed for similar predictions but at a fraction of their compute and training times." @default.
- W4311422092 created "2022-12-26" @default.
- W4311422092 creator A5015479227 @default.
- W4311422092 creator A5019860690 @default.
- W4311422092 creator A5032466147 @default.
- W4311422092 creator A5057001719 @default.
- W4311422092 date "2023-01-01" @default.
- W4311422092 modified "2023-09-26" @default.
- W4311422092 title "Temporal convolutional networks for data-driven thermal modeling of directed energy deposition" @default.
- W4311422092 cites W1976092422 @default.
- W4311422092 cites W2027197837 @default.
- W4311422092 cites W2767214661 @default.
- W4311422092 cites W2899283552 @default.
- W4311422092 cites W2919115771 @default.
- W4311422092 cites W2919507395 @default.
- W4311422092 cites W2943318449 @default.
- W4311422092 cites W2954872814 @default.
- W4311422092 cites W3003630384 @default.
- W4311422092 cites W3044050277 @default.
- W4311422092 cites W3068616514 @default.
- W4311422092 cites W3081772207 @default.
- W4311422092 cites W3089905528 @default.
- W4311422092 cites W3139343051 @default.
- W4311422092 cites W3157496129 @default.
- W4311422092 cites W4200483872 @default.
- W4311422092 cites W4283574155 @default.
- W4311422092 doi "https://doi.org/10.1016/j.jmapro.2022.11.063" @default.
- W4311422092 hasPublicationYear "2023" @default.
- W4311422092 type Work @default.
- W4311422092 citedByCount "2" @default.
- W4311422092 countsByYear W43114220922023 @default.
- W4311422092 crossrefType "journal-article" @default.
- W4311422092 hasAuthorship W4311422092A5015479227 @default.
- W4311422092 hasAuthorship W4311422092A5019860690 @default.
- W4311422092 hasAuthorship W4311422092A5032466147 @default.
- W4311422092 hasAuthorship W4311422092A5057001719 @default.
- W4311422092 hasConcept C108583219 @default.
- W4311422092 hasConcept C119857082 @default.
- W4311422092 hasConcept C121332964 @default.
- W4311422092 hasConcept C135628077 @default.
- W4311422092 hasConcept C151730666 @default.
- W4311422092 hasConcept C153294291 @default.
- W4311422092 hasConcept C154945302 @default.
- W4311422092 hasConcept C158622935 @default.
- W4311422092 hasConcept C186370098 @default.
- W4311422092 hasConcept C192562407 @default.
- W4311422092 hasConcept C204530211 @default.
- W4311422092 hasConcept C2816523 @default.
- W4311422092 hasConcept C41008148 @default.
- W4311422092 hasConcept C46435376 @default.
- W4311422092 hasConcept C62520636 @default.
- W4311422092 hasConcept C64297162 @default.
- W4311422092 hasConcept C81363708 @default.
- W4311422092 hasConcept C86803240 @default.
- W4311422092 hasConcept C97355855 @default.
- W4311422092 hasConceptScore W4311422092C108583219 @default.
- W4311422092 hasConceptScore W4311422092C119857082 @default.
- W4311422092 hasConceptScore W4311422092C121332964 @default.
- W4311422092 hasConceptScore W4311422092C135628077 @default.
- W4311422092 hasConceptScore W4311422092C151730666 @default.
- W4311422092 hasConceptScore W4311422092C153294291 @default.
- W4311422092 hasConceptScore W4311422092C154945302 @default.
- W4311422092 hasConceptScore W4311422092C158622935 @default.
- W4311422092 hasConceptScore W4311422092C186370098 @default.
- W4311422092 hasConceptScore W4311422092C192562407 @default.
- W4311422092 hasConceptScore W4311422092C204530211 @default.
- W4311422092 hasConceptScore W4311422092C2816523 @default.
- W4311422092 hasConceptScore W4311422092C41008148 @default.
- W4311422092 hasConceptScore W4311422092C46435376 @default.
- W4311422092 hasConceptScore W4311422092C62520636 @default.
- W4311422092 hasConceptScore W4311422092C64297162 @default.
- W4311422092 hasConceptScore W4311422092C81363708 @default.
- W4311422092 hasConceptScore W4311422092C86803240 @default.
- W4311422092 hasConceptScore W4311422092C97355855 @default.
- W4311422092 hasLocation W43114220921 @default.
- W4311422092 hasOpenAccess W4311422092 @default.
- W4311422092 hasPrimaryLocation W43114220921 @default.
- W4311422092 hasRelatedWork W2731899572 @default.
- W4311422092 hasRelatedWork W2999805992 @default.
- W4311422092 hasRelatedWork W3116150086 @default.
- W4311422092 hasRelatedWork W3133861977 @default.
- W4311422092 hasRelatedWork W4200173597 @default.
- W4311422092 hasRelatedWork W4223943233 @default.
- W4311422092 hasRelatedWork W4291897433 @default.
- W4311422092 hasRelatedWork W4312417841 @default.
- W4311422092 hasRelatedWork W4321369474 @default.
- W4311422092 hasRelatedWork W4380075502 @default.
- W4311422092 hasVolume "85" @default.
- W4311422092 isParatext "false" @default.
- W4311422092 isRetracted "false" @default.
- W4311422092 workType "article" @default.