Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311446572> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4311446572 abstract "<sec> <title>BACKGROUND</title> Prediction of successful weaning from mechanical ventilation in advance to intubation can facilitate discussions regarding end-of-life care before unnecessary intubation. </sec> <sec> <title>OBJECTIVE</title> We aimed to develop a machine-learning-based model that predicts successful weaning from ventilator support based on routine clinical and laboratory data taken before or immediately after intubation. </sec> <sec> <title>METHODS</title> We used the Medical Information Mart for Intensive Care-IV database, including adult patients who underwent mechanical ventilation in intensive care at the Beth Israel Deaconess Medical Center, USA. Clinical and laboratory variables collected before or within 24 hours of intubation were used to develop machine-learning models that predict the probability of successful weaning within 14 days of ventilator support. </sec> <sec> <title>RESULTS</title> Of 23,242 patients, 19,025 (81.9%) patients were successfully weaned from mechanical ventilation within 14 days. We selected 46 clinical and laboratory variables to create machine-learning models. The machine-learning-based ensemble voting classifier revealed the area under the receiver operating characteristic curve of 0.863 (95% confidence interval [CI] 0.855–0.870), which was significantly better than that of Sequential Organ Failure Assessment (0.588 [95% CI 0.566–0.609]) and Simplified Acute Physiology Score II (0.749 [95% CI 0.742–0.756]). The top features included lactate, anion gap, and prothrombin time. The model’s performance achieved a plateau with approximately the top 21 variables. </sec> <sec> <title>CONCLUSIONS</title> We developed machine learning algorithms that can predict successful weaning from mechanical ventilation in advance to intubation in the intensive care unit. Our models can aid in appropriate management for patients who hesitate to decide on ventilator support or meaningless end-of-life care. </sec>" @default.
- W4311446572 created "2022-12-26" @default.
- W4311446572 creator A5006857958 @default.
- W4311446572 creator A5013003753 @default.
- W4311446572 creator A5019745877 @default.
- W4311446572 creator A5023726383 @default.
- W4311446572 creator A5024615162 @default.
- W4311446572 creator A5044280346 @default.
- W4311446572 creator A5049728298 @default.
- W4311446572 creator A5081769858 @default.
- W4311446572 creator A5081863305 @default.
- W4311446572 date "2022-12-02" @default.
- W4311446572 modified "2023-09-27" @default.
- W4311446572 title "Machine Learning Algorithms Predict Successful Weaning from Mechanical Ventilation Before Intubation: Retrospective Cohort Study (Preprint)" @default.
- W4311446572 cites W1562553168 @default.
- W4311446572 cites W1986291503 @default.
- W4311446572 cites W1993396620 @default.
- W4311446572 cites W2006617902 @default.
- W4311446572 cites W2011301426 @default.
- W4311446572 cites W2015131080 @default.
- W4311446572 cites W2057925873 @default.
- W4311446572 cites W2087477166 @default.
- W4311446572 cites W2100805904 @default.
- W4311446572 cites W2111883268 @default.
- W4311446572 cites W2112908777 @default.
- W4311446572 cites W2125766343 @default.
- W4311446572 cites W2140066904 @default.
- W4311446572 cites W2151591509 @default.
- W4311446572 cites W2507187046 @default.
- W4311446572 cites W2558379714 @default.
- W4311446572 cites W2797010621 @default.
- W4311446572 cites W3080910144 @default.
- W4311446572 cites W3150635270 @default.
- W4311446572 cites W3159123674 @default.
- W4311446572 cites W3161173457 @default.
- W4311446572 cites W3184022450 @default.
- W4311446572 cites W3187536395 @default.
- W4311446572 cites W4239740009 @default.
- W4311446572 cites W4245986248 @default.
- W4311446572 cites W4295733304 @default.
- W4311446572 doi "https://doi.org/10.2196/preprints.44763" @default.
- W4311446572 hasPublicationYear "2022" @default.
- W4311446572 type Work @default.
- W4311446572 citedByCount "0" @default.
- W4311446572 crossrefType "posted-content" @default.
- W4311446572 hasAuthorship W4311446572A5006857958 @default.
- W4311446572 hasAuthorship W4311446572A5013003753 @default.
- W4311446572 hasAuthorship W4311446572A5019745877 @default.
- W4311446572 hasAuthorship W4311446572A5023726383 @default.
- W4311446572 hasAuthorship W4311446572A5024615162 @default.
- W4311446572 hasAuthorship W4311446572A5044280346 @default.
- W4311446572 hasAuthorship W4311446572A5049728298 @default.
- W4311446572 hasAuthorship W4311446572A5081769858 @default.
- W4311446572 hasAuthorship W4311446572A5081863305 @default.
- W4311446572 hasConcept C11413529 @default.
- W4311446572 hasConcept C119857082 @default.
- W4311446572 hasConcept C126322002 @default.
- W4311446572 hasConcept C141071460 @default.
- W4311446572 hasConcept C154945302 @default.
- W4311446572 hasConcept C177713679 @default.
- W4311446572 hasConcept C194828623 @default.
- W4311446572 hasConcept C2777080012 @default.
- W4311446572 hasConcept C2778716859 @default.
- W4311446572 hasConcept C2780655333 @default.
- W4311446572 hasConcept C2987404301 @default.
- W4311446572 hasConcept C41008148 @default.
- W4311446572 hasConcept C44249647 @default.
- W4311446572 hasConcept C58471807 @default.
- W4311446572 hasConcept C71924100 @default.
- W4311446572 hasConceptScore W4311446572C11413529 @default.
- W4311446572 hasConceptScore W4311446572C119857082 @default.
- W4311446572 hasConceptScore W4311446572C126322002 @default.
- W4311446572 hasConceptScore W4311446572C141071460 @default.
- W4311446572 hasConceptScore W4311446572C154945302 @default.
- W4311446572 hasConceptScore W4311446572C177713679 @default.
- W4311446572 hasConceptScore W4311446572C194828623 @default.
- W4311446572 hasConceptScore W4311446572C2777080012 @default.
- W4311446572 hasConceptScore W4311446572C2778716859 @default.
- W4311446572 hasConceptScore W4311446572C2780655333 @default.
- W4311446572 hasConceptScore W4311446572C2987404301 @default.
- W4311446572 hasConceptScore W4311446572C41008148 @default.
- W4311446572 hasConceptScore W4311446572C44249647 @default.
- W4311446572 hasConceptScore W4311446572C58471807 @default.
- W4311446572 hasConceptScore W4311446572C71924100 @default.
- W4311446572 hasLocation W43114465721 @default.
- W4311446572 hasOpenAccess W4311446572 @default.
- W4311446572 hasPrimaryLocation W43114465721 @default.
- W4311446572 hasRelatedWork W1900840894 @default.
- W4311446572 hasRelatedWork W2135360648 @default.
- W4311446572 hasRelatedWork W2323050884 @default.
- W4311446572 hasRelatedWork W2600082764 @default.
- W4311446572 hasRelatedWork W2753772539 @default.
- W4311446572 hasRelatedWork W2898063293 @default.
- W4311446572 hasRelatedWork W2999450641 @default.
- W4311446572 hasRelatedWork W3030166578 @default.
- W4311446572 hasRelatedWork W3087198691 @default.
- W4311446572 hasRelatedWork W4286716579 @default.
- W4311446572 isParatext "false" @default.
- W4311446572 isRetracted "false" @default.
- W4311446572 workType "article" @default.