Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311446825> ?p ?o ?g. }
- W4311446825 endingPage "139" @default.
- W4311446825 startingPage "128" @default.
- W4311446825 abstract "Passing knowledge from human to human is a natural process that has continued since the beginning of humankind. Over the past few decades, we have witnessed that knowledge is no longer passed only between humans but also from humans to machines. The latter form of knowledge transfer represents a cornerstone in artificial intelligence (AI) and lays the foundation for knowledge engineering (KE). In order to pass knowledge to machines, humans need to structure, formalize, and make knowledge machine-readable. Subsequently, humans also need to develop software that emulates their decision-making process. In order to engineer chemical knowledge, chemists are often required to challenge their understanding of chemistry and thinking processes, which may help improve the structure of chemical knowledge.Knowledge engineering in chemistry dates from the development of expert systems that emulated the thinking process of analytical and organic chemists. Since then, many different expert systems employing rather limited knowledge bases have been developed, solving problems in retrosynthesis, analytical chemistry, chemical risk assessment, etc. However, toward the end of the 20th century, the AI winters slowed down the development of expert systems for chemistry. At the same time, the increasing complexity of chemical research, alongside the limitations of the available computing tools, made it difficult for many chemistry expert systems to keep pace.In the past two decades, the semantic web, the popularization of object-oriented programming, and the increase in computational power have revitalized knowledge engineering. Knowledge formalization through ontologies has become commonplace, triggering the subsequent development of knowledge graphs and cognitive software agents. These tools enable the possibility of interoperability, enabling the representation of more complex systems, inference capabilities, and the synthesis of new knowledge.This Account introduces the history, the core principles of KE, and its applications within the broad realm of chemical research and engineering. In this regard, we first discuss how chemical knowledge is formalized and how a chemist's cognition can be emulated with the help of reasoning algorithms. Following this, we discuss various applications of knowledge graph and agent technology used to solve problems in chemistry related to molecular engineering, chemical mechanisms, multiscale modeling, automation of calculations and experiments, and chemist-machine interactions. These developments are discussed in the context of a universal and dynamic knowledge ecosystem, referred to as The World Avatar (TWA)." @default.
- W4311446825 created "2022-12-26" @default.
- W4311446825 creator A5025047702 @default.
- W4311446825 creator A5049709560 @default.
- W4311446825 creator A5057821475 @default.
- W4311446825 creator A5062571604 @default.
- W4311446825 creator A5065920425 @default.
- W4311446825 date "2022-12-14" @default.
- W4311446825 modified "2023-09-26" @default.
- W4311446825 title "Knowledge Engineering in Chemistry: From Expert Systems to Agents of Creation" @default.
- W4311446825 cites W1935434993 @default.
- W4311446825 cites W1958051428 @default.
- W4311446825 cites W1965269139 @default.
- W4311446825 cites W1965465660 @default.
- W4311446825 cites W1966175676 @default.
- W4311446825 cites W1973312033 @default.
- W4311446825 cites W1978827558 @default.
- W4311446825 cites W1997974358 @default.
- W4311446825 cites W2006026068 @default.
- W4311446825 cites W2032361183 @default.
- W4311446825 cites W2033217456 @default.
- W4311446825 cites W2033377040 @default.
- W4311446825 cites W2039234396 @default.
- W4311446825 cites W2041548070 @default.
- W4311446825 cites W2059981748 @default.
- W4311446825 cites W2061459648 @default.
- W4311446825 cites W2077396836 @default.
- W4311446825 cites W2086457680 @default.
- W4311446825 cites W2095441424 @default.
- W4311446825 cites W2095848001 @default.
- W4311446825 cites W2159292941 @default.
- W4311446825 cites W2167724537 @default.
- W4311446825 cites W2169678694 @default.
- W4311446825 cites W2171830166 @default.
- W4311446825 cites W2231133841 @default.
- W4311446825 cites W2302501749 @default.
- W4311446825 cites W2324964582 @default.
- W4311446825 cites W2369352720 @default.
- W4311446825 cites W2477622860 @default.
- W4311446825 cites W2485749800 @default.
- W4311446825 cites W2883672011 @default.
- W4311446825 cites W2913431805 @default.
- W4311446825 cites W2947398416 @default.
- W4311446825 cites W2972535098 @default.
- W4311446825 cites W2973057706 @default.
- W4311446825 cites W2974468034 @default.
- W4311446825 cites W2976301483 @default.
- W4311446825 cites W2979688781 @default.
- W4311446825 cites W2982418414 @default.
- W4311446825 cites W2994738957 @default.
- W4311446825 cites W3003265726 @default.
- W4311446825 cites W3012638926 @default.
- W4311446825 cites W3033784543 @default.
- W4311446825 cites W3042315843 @default.
- W4311446825 cites W3078551422 @default.
- W4311446825 cites W3110513638 @default.
- W4311446825 cites W3128881494 @default.
- W4311446825 cites W3136296618 @default.
- W4311446825 cites W3140777595 @default.
- W4311446825 cites W3170949898 @default.
- W4311446825 cites W3178152649 @default.
- W4311446825 cites W3190966924 @default.
- W4311446825 cites W3196974186 @default.
- W4311446825 cites W3200277160 @default.
- W4311446825 cites W3200538338 @default.
- W4311446825 cites W3201114462 @default.
- W4311446825 cites W4206181733 @default.
- W4311446825 cites W4221039458 @default.
- W4311446825 cites W4229073922 @default.
- W4311446825 cites W4236488977 @default.
- W4311446825 cites W4239696231 @default.
- W4311446825 cites W4283274435 @default.
- W4311446825 cites W4287731710 @default.
- W4311446825 cites W657191541 @default.
- W4311446825 doi "https://doi.org/10.1021/acs.accounts.2c00617" @default.
- W4311446825 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36516456" @default.
- W4311446825 hasPublicationYear "2022" @default.
- W4311446825 type Work @default.
- W4311446825 citedByCount "1" @default.
- W4311446825 countsByYear W43114468252023 @default.
- W4311446825 crossrefType "journal-article" @default.
- W4311446825 hasAuthorship W4311446825A5025047702 @default.
- W4311446825 hasAuthorship W4311446825A5049709560 @default.
- W4311446825 hasAuthorship W4311446825A5057821475 @default.
- W4311446825 hasAuthorship W4311446825A5062571604 @default.
- W4311446825 hasAuthorship W4311446825A5065920425 @default.
- W4311446825 hasBestOaLocation W43114468252 @default.
- W4311446825 hasConcept C111919701 @default.
- W4311446825 hasConcept C13280743 @default.
- W4311446825 hasConcept C142362112 @default.
- W4311446825 hasConcept C153349607 @default.
- W4311446825 hasConcept C154945302 @default.
- W4311446825 hasConcept C161301231 @default.
- W4311446825 hasConcept C185592680 @default.
- W4311446825 hasConcept C205649164 @default.
- W4311446825 hasConcept C2777526511 @default.
- W4311446825 hasConcept C2780616401 @default.
- W4311446825 hasConcept C41008148 @default.