Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311447028> ?p ?o ?g. }
- W4311447028 endingPage "44" @default.
- W4311447028 startingPage "31" @default.
- W4311447028 abstract "Special attention has been given to chromium (Cr) as a paleoproxy tracing redox cycling throughout Earth’s history, due to differences in the solubility of its primary redox species at Earth’s surface (Cr(III) and Cr(VI)) and isotope fractionation associated with their interconversion. In turn, chromium’s paleoproxy potential has motivated studies of the modern ocean to better understand which processes drive its cycling and to constrain their impact on the Cr isotope composition (δ53Cr) of seawater. Here, we present total dissolved seawater Cr concentrations and δ53Cr along the GEOTRACES GP13 section. This section is a zonal transect extending from Australia in the subtropical southwest Pacific Ocean. Surface signals of local biological Cr cycling are minimal, in agreement with distributions of dissolved major nutrients as well as biologically-controlled trace metals in this low productivity, oligotrophic environment. Depth profiles have Cr concentration minima in surface waters and maxima at depth, and are largely shaped by the advection of nutrient- and Cr-rich subsurface waters rather than vertically-driven processes. Samples close to the sediment–water interface indicate important benthic Cr fluxes across the section. The GP13 transect crosses the hydrothermally-active Kermadec Arc. Hydrothermal fluids (consisting of <15% background seawater) were collected from three venting sites at the Brothers Volcano (along the Kermadec Arc). These fluids yielded near-crustal δ53Cr values (−0.17 to +0.08‰) and elevated [Cr] (7.5–23 nmol kg−1, hydrothermal endmember [Cr] ≈ 8–27 nmol kg−1), indicating that the Kermadec Arc may be an isotopically light Cr source. Dissolved [Fe] enrichments have been reported previously in deep waters (∼1600–3000 m) along the GP13 transect, east of the Kermadec Arc. These same waters show elevated [Cr] compared to Circumpolar Deep Water ([Cr] = 3.88 ± 0.11, δ53Cr = 0.89 ± 0.08, n = 32), with an average [Cr] accumulation of 0.71 ± 0.11 nmol kg−1 (1 SD), and an estimated δ53Cr of +0.46 ± 0.30‰ (2 SD, n = 9) for the accumulated Cr. Comparing high-temperature vent and neutrally buoyant plume data, hydrothermal-sourced Cr is likely negligable compared to Cr contributions from other processes (benthic fluxes, release from particles), and the advection of more Cr-rich Pacific Deep Water. It is unlikely that hydrothermal vents would be a major contributor within the regional or global biogeochemical Cr cycle, even if hydrothermal fluxes change by orders of magnitude, and therefore δ53Cr trends in the paleorecord may be attributable, at least in part, to major changes in other controls on Cr (e.g. widespread anoxia)." @default.
- W4311447028 created "2022-12-26" @default.
- W4311447028 creator A5004061568 @default.
- W4311447028 creator A5019500657 @default.
- W4311447028 creator A5023790969 @default.
- W4311447028 creator A5031479358 @default.
- W4311447028 creator A5036193204 @default.
- W4311447028 creator A5048889862 @default.
- W4311447028 creator A5060107463 @default.
- W4311447028 creator A5068531945 @default.
- W4311447028 creator A5083539361 @default.
- W4311447028 creator A5087925100 @default.
- W4311447028 date "2023-02-01" @default.
- W4311447028 modified "2023-10-01" @default.
- W4311447028 title "Chromium stable isotope distributions in the southwest Pacific Ocean and constraints on hydrothermal input from the Kermadec Arc" @default.
- W4311447028 cites W1577223726 @default.
- W4311447028 cites W1718609491 @default.
- W4311447028 cites W1966983664 @default.
- W4311447028 cites W1972989857 @default.
- W4311447028 cites W1974045653 @default.
- W4311447028 cites W1976823463 @default.
- W4311447028 cites W1982342383 @default.
- W4311447028 cites W1982404483 @default.
- W4311447028 cites W1985317544 @default.
- W4311447028 cites W1985802011 @default.
- W4311447028 cites W1989101325 @default.
- W4311447028 cites W1994318444 @default.
- W4311447028 cites W1999275314 @default.
- W4311447028 cites W2004159944 @default.
- W4311447028 cites W2004359105 @default.
- W4311447028 cites W2018838558 @default.
- W4311447028 cites W2019091833 @default.
- W4311447028 cites W2022706372 @default.
- W4311447028 cites W2031157626 @default.
- W4311447028 cites W2031206369 @default.
- W4311447028 cites W2036062163 @default.
- W4311447028 cites W2042009224 @default.
- W4311447028 cites W2042292804 @default.
- W4311447028 cites W2046999093 @default.
- W4311447028 cites W2049650311 @default.
- W4311447028 cites W2054434393 @default.
- W4311447028 cites W2056613903 @default.
- W4311447028 cites W2057262327 @default.
- W4311447028 cites W2060563278 @default.
- W4311447028 cites W2061255063 @default.
- W4311447028 cites W2062900030 @default.
- W4311447028 cites W2072891964 @default.
- W4311447028 cites W2074361563 @default.
- W4311447028 cites W2077550490 @default.
- W4311447028 cites W2078843984 @default.
- W4311447028 cites W2079639348 @default.
- W4311447028 cites W2085487206 @default.
- W4311447028 cites W2089115884 @default.
- W4311447028 cites W2107372061 @default.
- W4311447028 cites W2110373790 @default.
- W4311447028 cites W2150254180 @default.
- W4311447028 cites W2170831368 @default.
- W4311447028 cites W2336022012 @default.
- W4311447028 cites W2343689725 @default.
- W4311447028 cites W2581834115 @default.
- W4311447028 cites W2591502295 @default.
- W4311447028 cites W2767635248 @default.
- W4311447028 cites W2790409179 @default.
- W4311447028 cites W2792829996 @default.
- W4311447028 cites W2793441041 @default.
- W4311447028 cites W2801221163 @default.
- W4311447028 cites W2884576078 @default.
- W4311447028 cites W2886918414 @default.
- W4311447028 cites W2924349798 @default.
- W4311447028 cites W2930421464 @default.
- W4311447028 cites W2965522940 @default.
- W4311447028 cites W2971298986 @default.
- W4311447028 cites W2971750067 @default.
- W4311447028 cites W2993175329 @default.
- W4311447028 cites W2994452159 @default.
- W4311447028 cites W2996691707 @default.
- W4311447028 cites W2998901235 @default.
- W4311447028 cites W2999871187 @default.
- W4311447028 cites W3034579300 @default.
- W4311447028 cites W3038437824 @default.
- W4311447028 cites W3084867412 @default.
- W4311447028 cites W3097260664 @default.
- W4311447028 cites W3121570511 @default.
- W4311447028 cites W3133129759 @default.
- W4311447028 cites W3134727572 @default.
- W4311447028 cites W3163544363 @default.
- W4311447028 cites W3170206074 @default.
- W4311447028 cites W3183037854 @default.
- W4311447028 cites W3195943592 @default.
- W4311447028 cites W327959922 @default.
- W4311447028 cites W346698034 @default.
- W4311447028 cites W4205237818 @default.
- W4311447028 cites W4301398593 @default.
- W4311447028 doi "https://doi.org/10.1016/j.gca.2022.12.010" @default.
- W4311447028 hasPublicationYear "2023" @default.
- W4311447028 type Work @default.
- W4311447028 citedByCount "3" @default.
- W4311447028 countsByYear W43114470282023 @default.