Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311447039> ?p ?o ?g. }
- W4311447039 endingPage "104729" @default.
- W4311447039 startingPage "104729" @default.
- W4311447039 abstract "Antifreeze proteins (AFPs) are found in different living organisms like plants, insects, and fish. AFPs avoid the formation of ice crystals in these organisms and make them able to survive in high cold regions. AFPs are widely deployed in metabolic genetic engineering, food technology, yogurt making, and cryopreservation. Considering the significance of AFPs, several predictors were proposed to identify AFPs. However, due to the unsatisfactory results of the predictors, more accurate predictors are critical. We carried out a thorough survey and summarized AFPs predictors that were developed for identification of AFPs. We provided a brief description of applied datasets, feature descriptors, model training classifiers, performance assessment parameters, and web servers. In this review article, the drawbacks of the proposed predictors and the best predictors were highlighted. We explained the future insights and more effective feature descriptors, appropriate feature selection techniques, and efficient classifiers that can enhance the performance of novel predictors for fast and accurate identification of AFPs." @default.
- W4311447039 created "2022-12-26" @default.
- W4311447039 creator A5021931891 @default.
- W4311447039 creator A5022606799 @default.
- W4311447039 creator A5084703478 @default.
- W4311447039 creator A5086761503 @default.
- W4311447039 creator A5091131586 @default.
- W4311447039 date "2023-01-01" @default.
- W4311447039 modified "2023-10-16" @default.
- W4311447039 title "Comparative analysis of the existing methods for prediction of antifreeze proteins" @default.
- W4311447039 cites W1485819570 @default.
- W4311447039 cites W1620085426 @default.
- W4311447039 cites W1821507858 @default.
- W4311447039 cites W1964859388 @default.
- W4311447039 cites W1966057572 @default.
- W4311447039 cites W1996120479 @default.
- W4311447039 cites W1999156278 @default.
- W4311447039 cites W2012273317 @default.
- W4311447039 cites W2016319093 @default.
- W4311447039 cites W2018266109 @default.
- W4311447039 cites W2023249629 @default.
- W4311447039 cites W2026710881 @default.
- W4311447039 cites W2036956828 @default.
- W4311447039 cites W2037634559 @default.
- W4311447039 cites W2047640421 @default.
- W4311447039 cites W2063385774 @default.
- W4311447039 cites W2068833644 @default.
- W4311447039 cites W2078403442 @default.
- W4311447039 cites W2080279600 @default.
- W4311447039 cites W2095864746 @default.
- W4311447039 cites W2104873783 @default.
- W4311447039 cites W2114358087 @default.
- W4311447039 cites W2129448726 @default.
- W4311447039 cites W2130479394 @default.
- W4311447039 cites W2139773230 @default.
- W4311447039 cites W2140619881 @default.
- W4311447039 cites W2143635696 @default.
- W4311447039 cites W2145036462 @default.
- W4311447039 cites W2145957695 @default.
- W4311447039 cites W2154139219 @default.
- W4311447039 cites W2157142295 @default.
- W4311447039 cites W2160257187 @default.
- W4311447039 cites W2189751284 @default.
- W4311447039 cites W2292448805 @default.
- W4311447039 cites W2315269201 @default.
- W4311447039 cites W2370182361 @default.
- W4311447039 cites W2512132571 @default.
- W4311447039 cites W2531927115 @default.
- W4311447039 cites W2586057086 @default.
- W4311447039 cites W2787963446 @default.
- W4311447039 cites W2793062918 @default.
- W4311447039 cites W2883988759 @default.
- W4311447039 cites W2888317147 @default.
- W4311447039 cites W2888408766 @default.
- W4311447039 cites W2896727370 @default.
- W4311447039 cites W2944052077 @default.
- W4311447039 cites W2946492269 @default.
- W4311447039 cites W2963177663 @default.
- W4311447039 cites W2968008092 @default.
- W4311447039 cites W2987011545 @default.
- W4311447039 cites W2988542995 @default.
- W4311447039 cites W2989902081 @default.
- W4311447039 cites W2997708032 @default.
- W4311447039 cites W3011988525 @default.
- W4311447039 cites W3018950940 @default.
- W4311447039 cites W3033804411 @default.
- W4311447039 cites W3034436467 @default.
- W4311447039 cites W3041701644 @default.
- W4311447039 cites W3044140833 @default.
- W4311447039 cites W3109659125 @default.
- W4311447039 cites W3117145375 @default.
- W4311447039 cites W3176435454 @default.
- W4311447039 cites W3182055317 @default.
- W4311447039 cites W3184871101 @default.
- W4311447039 cites W3194982939 @default.
- W4311447039 cites W3198608046 @default.
- W4311447039 cites W3208498407 @default.
- W4311447039 cites W3216537044 @default.
- W4311447039 cites W4214632834 @default.
- W4311447039 cites W4214656865 @default.
- W4311447039 cites W4220670656 @default.
- W4311447039 cites W4220900187 @default.
- W4311447039 cites W4256010680 @default.
- W4311447039 cites W4281480754 @default.
- W4311447039 cites W4282929795 @default.
- W4311447039 cites W4298325713 @default.
- W4311447039 cites W631568323 @default.
- W4311447039 doi "https://doi.org/10.1016/j.chemolab.2022.104729" @default.
- W4311447039 hasPublicationYear "2023" @default.
- W4311447039 type Work @default.
- W4311447039 citedByCount "4" @default.
- W4311447039 countsByYear W43114470392023 @default.
- W4311447039 crossrefType "journal-article" @default.
- W4311447039 hasAuthorship W4311447039A5021931891 @default.
- W4311447039 hasAuthorship W4311447039A5022606799 @default.
- W4311447039 hasAuthorship W4311447039A5084703478 @default.
- W4311447039 hasAuthorship W4311447039A5086761503 @default.
- W4311447039 hasAuthorship W4311447039A5091131586 @default.