Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311448429> ?p ?o ?g. }
- W4311448429 endingPage "120707" @default.
- W4311448429 startingPage "120707" @default.
- W4311448429 abstract "Modeling forest fire behavior is very important for the effective control of forest fires and the setting up of necessary precautions before fires start. However, studies of forest fire behavior are complex studies that depend on many variables and usually involve large data sets. For this reason, the predictive power and speed of classical forecasting models are lower than of artificial intelligence models in cases involving big data and many variables. Moreover, classical forecasting models must satisfy certain statistical assumptions, unlike artificial intelligence methods. Thus, in this study, predictions were made of surface fire behavior, especially the rate of fire spread and the fire intensity, at the location at which fires started using two artificial intelligence methods, an artificial neural network and a decision tree. The accuracy of the developed models was fitted and tested. Finally, the classical regression model for predicting surface fire behavior was compared with the two artificial intelligence methods. The accuracy measures of the artificial intelligence models were found to be better than those of the classical model." @default.
- W4311448429 created "2022-12-26" @default.
- W4311448429 creator A5010114692 @default.
- W4311448429 creator A5089014456 @default.
- W4311448429 date "2023-02-01" @default.
- W4311448429 modified "2023-10-18" @default.
- W4311448429 title "Fire behavior prediction with artificial intelligence in thinned black pine (Pinus nigra Arnold) stand" @default.
- W4311448429 cites W1595796962 @default.
- W4311448429 cites W1605323303 @default.
- W4311448429 cites W1883699535 @default.
- W4311448429 cites W1964647807 @default.
- W4311448429 cites W1987552279 @default.
- W4311448429 cites W2001742722 @default.
- W4311448429 cites W2003206349 @default.
- W4311448429 cites W2004802920 @default.
- W4311448429 cites W2020793920 @default.
- W4311448429 cites W2050547330 @default.
- W4311448429 cites W2052936910 @default.
- W4311448429 cites W2053927499 @default.
- W4311448429 cites W2056087065 @default.
- W4311448429 cites W2067077825 @default.
- W4311448429 cites W2068141066 @default.
- W4311448429 cites W2082744326 @default.
- W4311448429 cites W2083497822 @default.
- W4311448429 cites W2087681211 @default.
- W4311448429 cites W2091006220 @default.
- W4311448429 cites W2096352448 @default.
- W4311448429 cites W2111095961 @default.
- W4311448429 cites W2115035114 @default.
- W4311448429 cites W2121394390 @default.
- W4311448429 cites W2133854405 @default.
- W4311448429 cites W2152175212 @default.
- W4311448429 cites W2157145330 @default.
- W4311448429 cites W2218047931 @default.
- W4311448429 cites W2223110200 @default.
- W4311448429 cites W2294741226 @default.
- W4311448429 cites W2331025537 @default.
- W4311448429 cites W2334791991 @default.
- W4311448429 cites W2334806815 @default.
- W4311448429 cites W2476621593 @default.
- W4311448429 cites W2580691580 @default.
- W4311448429 cites W2587212003 @default.
- W4311448429 cites W2607994032 @default.
- W4311448429 cites W2791569356 @default.
- W4311448429 cites W2807573627 @default.
- W4311448429 cites W2867894968 @default.
- W4311448429 cites W2890226528 @default.
- W4311448429 cites W2900755863 @default.
- W4311448429 cites W2907066318 @default.
- W4311448429 cites W2913649977 @default.
- W4311448429 cites W2925105068 @default.
- W4311448429 cites W2942047909 @default.
- W4311448429 cites W2943392999 @default.
- W4311448429 cites W2958837267 @default.
- W4311448429 cites W2990999233 @default.
- W4311448429 cites W2993247229 @default.
- W4311448429 cites W3027418199 @default.
- W4311448429 cites W3034300825 @default.
- W4311448429 cites W3095070079 @default.
- W4311448429 cites W3099079911 @default.
- W4311448429 cites W3106719883 @default.
- W4311448429 cites W3132731194 @default.
- W4311448429 cites W3185726274 @default.
- W4311448429 cites W4206337811 @default.
- W4311448429 cites W4210917430 @default.
- W4311448429 cites W4231125287 @default.
- W4311448429 cites W4297957988 @default.
- W4311448429 doi "https://doi.org/10.1016/j.foreco.2022.120707" @default.
- W4311448429 hasPublicationYear "2023" @default.
- W4311448429 type Work @default.
- W4311448429 citedByCount "3" @default.
- W4311448429 countsByYear W43114484292023 @default.
- W4311448429 crossrefType "journal-article" @default.
- W4311448429 hasAuthorship W4311448429A5010114692 @default.
- W4311448429 hasAuthorship W4311448429A5089014456 @default.
- W4311448429 hasConcept C111472728 @default.
- W4311448429 hasConcept C119857082 @default.
- W4311448429 hasConcept C138885662 @default.
- W4311448429 hasConcept C154945302 @default.
- W4311448429 hasConcept C2778136018 @default.
- W4311448429 hasConcept C41008148 @default.
- W4311448429 hasConcept C50644808 @default.
- W4311448429 hasConcept C84525736 @default.
- W4311448429 hasConceptScore W4311448429C111472728 @default.
- W4311448429 hasConceptScore W4311448429C119857082 @default.
- W4311448429 hasConceptScore W4311448429C138885662 @default.
- W4311448429 hasConceptScore W4311448429C154945302 @default.
- W4311448429 hasConceptScore W4311448429C2778136018 @default.
- W4311448429 hasConceptScore W4311448429C41008148 @default.
- W4311448429 hasConceptScore W4311448429C50644808 @default.
- W4311448429 hasConceptScore W4311448429C84525736 @default.
- W4311448429 hasLocation W43114484291 @default.
- W4311448429 hasOpenAccess W4311448429 @default.
- W4311448429 hasPrimaryLocation W43114484291 @default.
- W4311448429 hasRelatedWork W1470425429 @default.
- W4311448429 hasRelatedWork W3200719183 @default.
- W4311448429 hasRelatedWork W3204641204 @default.
- W4311448429 hasRelatedWork W4200196661 @default.