Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311454650> ?p ?o ?g. }
- W4311454650 endingPage "126420" @default.
- W4311454650 startingPage "126420" @default.
- W4311454650 abstract "-Probabilistic wind power forecasting includes more detailed information than deterministic forecasting, which can provide reliable guidance for the optimal decisions of power system scheduling operation. However, there are certain laws in the magnitude and direction of the forecasting errors corresponding to different power series fluctuations, which leads to different predictability and forecasting accuracy of different power fluctuation patterns. As most studies still focused on the model algorithm improvement and pay less attention to the law of power data itself, this paper proposes a novel probabilistic forecasting method based on the swinging door algorithm (SDA), fuzzy c means (FCM) clustering method, long short-term memory (LSTM) neural network, and nonparametric kernel density estimation (KDE), considering the correlation between wind power fluctuation patterns and forecasting errors. SDA and FCM are used to assign appropriate pattern labels to the power fluctuations, and then LSTM and KDE are used to introduce pattern recognition results in probabilistic forecasting models, excavating the inherent law of the data for classification modeling. Simulation shows that the proposed model can adapt to different error distribution patterns, and the models introduced fluctuation pattern recognition can improve the skill score of probabilistic forecasting by 36.50% on average than those without pattern recognition." @default.
- W4311454650 created "2022-12-26" @default.
- W4311454650 creator A5002293594 @default.
- W4311454650 creator A5002847748 @default.
- W4311454650 creator A5018073672 @default.
- W4311454650 creator A5032390398 @default.
- W4311454650 creator A5034934734 @default.
- W4311454650 creator A5036881486 @default.
- W4311454650 creator A5085608153 @default.
- W4311454650 creator A5086529957 @default.
- W4311454650 date "2023-03-01" @default.
- W4311454650 modified "2023-10-17" @default.
- W4311454650 title "Fluctuation pattern recognition based ultra-short-term wind power probabilistic forecasting method" @default.
- W4311454650 cites W1514832573 @default.
- W4311454650 cites W1958811892 @default.
- W4311454650 cites W1981796233 @default.
- W4311454650 cites W2055221518 @default.
- W4311454650 cites W2114471530 @default.
- W4311454650 cites W2153730736 @default.
- W4311454650 cites W2327604715 @default.
- W4311454650 cites W2345862676 @default.
- W4311454650 cites W2469077086 @default.
- W4311454650 cites W2493657822 @default.
- W4311454650 cites W2560370080 @default.
- W4311454650 cites W2592036976 @default.
- W4311454650 cites W2604835210 @default.
- W4311454650 cites W2606817745 @default.
- W4311454650 cites W2777155931 @default.
- W4311454650 cites W2792138461 @default.
- W4311454650 cites W2795338198 @default.
- W4311454650 cites W2804705402 @default.
- W4311454650 cites W2891999340 @default.
- W4311454650 cites W2906239552 @default.
- W4311454650 cites W2954586649 @default.
- W4311454650 cites W2964717139 @default.
- W4311454650 cites W2988149727 @default.
- W4311454650 cites W2993128518 @default.
- W4311454650 cites W2998188743 @default.
- W4311454650 cites W3003980041 @default.
- W4311454650 cites W3010769774 @default.
- W4311454650 cites W3011353627 @default.
- W4311454650 cites W3020882770 @default.
- W4311454650 cites W3027499001 @default.
- W4311454650 cites W3036688307 @default.
- W4311454650 cites W3047825862 @default.
- W4311454650 cites W3080928333 @default.
- W4311454650 cites W3083590190 @default.
- W4311454650 cites W3093263007 @default.
- W4311454650 cites W3093877613 @default.
- W4311454650 cites W3106326231 @default.
- W4311454650 cites W3111201484 @default.
- W4311454650 cites W3112613839 @default.
- W4311454650 cites W3127644829 @default.
- W4311454650 cites W3193246364 @default.
- W4311454650 cites W3196699852 @default.
- W4311454650 cites W3198420826 @default.
- W4311454650 cites W3200726017 @default.
- W4311454650 cites W4200238335 @default.
- W4311454650 cites W4240615119 @default.
- W4311454650 cites W4281651325 @default.
- W4311454650 cites W4285725512 @default.
- W4311454650 cites W4313129698 @default.
- W4311454650 doi "https://doi.org/10.1016/j.energy.2022.126420" @default.
- W4311454650 hasPublicationYear "2023" @default.
- W4311454650 type Work @default.
- W4311454650 citedByCount "0" @default.
- W4311454650 crossrefType "journal-article" @default.
- W4311454650 hasAuthorship W4311454650A5002293594 @default.
- W4311454650 hasAuthorship W4311454650A5002847748 @default.
- W4311454650 hasAuthorship W4311454650A5018073672 @default.
- W4311454650 hasAuthorship W4311454650A5032390398 @default.
- W4311454650 hasAuthorship W4311454650A5034934734 @default.
- W4311454650 hasAuthorship W4311454650A5036881486 @default.
- W4311454650 hasAuthorship W4311454650A5085608153 @default.
- W4311454650 hasAuthorship W4311454650A5086529957 @default.
- W4311454650 hasConcept C105795698 @default.
- W4311454650 hasConcept C119599485 @default.
- W4311454650 hasConcept C119857082 @default.
- W4311454650 hasConcept C121332964 @default.
- W4311454650 hasConcept C122282355 @default.
- W4311454650 hasConcept C124101348 @default.
- W4311454650 hasConcept C127413603 @default.
- W4311454650 hasConcept C151406439 @default.
- W4311454650 hasConcept C153180895 @default.
- W4311454650 hasConcept C154945302 @default.
- W4311454650 hasConcept C163258240 @default.
- W4311454650 hasConcept C185429906 @default.
- W4311454650 hasConcept C197640229 @default.
- W4311454650 hasConcept C2781084341 @default.
- W4311454650 hasConcept C33923547 @default.
- W4311454650 hasConcept C41008148 @default.
- W4311454650 hasConcept C49937458 @default.
- W4311454650 hasConcept C50644808 @default.
- W4311454650 hasConcept C58166 @default.
- W4311454650 hasConcept C62520636 @default.
- W4311454650 hasConcept C71134354 @default.
- W4311454650 hasConcept C73555534 @default.
- W4311454650 hasConcept C78600449 @default.