Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311454679> ?p ?o ?g. }
- W4311454679 endingPage "100898" @default.
- W4311454679 startingPage "100898" @default.
- W4311454679 abstract "The buildings in the rural areas of Morocco exist in various shapes and sizes. They are randomly distributed and are generally constructed of primary materials such as clay, wood, and tin. For these reasons, their detection is generally difficult and inaccurate with optical satellite imagery and traditional image processing techniques, particularly in rural settlements. New approaches, particularly those of Deep Learning, are called for testing their contribution to the detection of buildings and settlements in rural areas. This study aims to detect and map the settlements in rural areas in the Souss-Massa region using Sentinel-2 satellite images, based on deep Learning algorithms. First, we tested the result of the convolutional neural network architecture UNet. Then, to evaluate the impact of filters number on the performance of UNet, we increased the number of filters in the convolution layer. And third, we implement the deep Residual UNet (ResUNet). To evaluate the quality of tested models, special metrics, such as accuracy, precision, recall, F1-score, and the ROC curve are used. The obtained precision of 87% of precision and 54% of F1-score for the UNet with an increased number of filters outperforms the other algorithms UNet and ResUNet, which have 86.2% of precision and 81.2% precision, respectively. We compared our perception to those of other related studies conducted to extract buildings or settlements in rural areas using high to very high-resolution images and machine learning and deep learning algorithms. Our results show that the performance of settlement detection in rural areas using deep learning is affected by the quality and quantity of the model training base images and the number of filters used in the convolution layer." @default.
- W4311454679 created "2022-12-26" @default.
- W4311454679 creator A5010851974 @default.
- W4311454679 creator A5012331306 @default.
- W4311454679 creator A5024154808 @default.
- W4311454679 creator A5036428276 @default.
- W4311454679 creator A5038923386 @default.
- W4311454679 creator A5052306054 @default.
- W4311454679 creator A5062067641 @default.
- W4311454679 creator A5069092734 @default.
- W4311454679 creator A5074569979 @default.
- W4311454679 creator A5081118161 @default.
- W4311454679 date "2023-01-01" @default.
- W4311454679 modified "2023-10-14" @default.
- W4311454679 title "A deep learning classification approach using high spatial satellite images for detection of built-up areas in rural zones: Case study of Souss-Massa region - Morocco" @default.
- W4311454679 cites W2075094538 @default.
- W4311454679 cites W2283002322 @default.
- W4311454679 cites W2341130385 @default.
- W4311454679 cites W2597944323 @default.
- W4311454679 cites W2753588101 @default.
- W4311454679 cites W2765165894 @default.
- W4311454679 cites W2766666090 @default.
- W4311454679 cites W2774320778 @default.
- W4311454679 cites W2782522152 @default.
- W4311454679 cites W2800360725 @default.
- W4311454679 cites W2891090518 @default.
- W4311454679 cites W2901719150 @default.
- W4311454679 cites W2907025726 @default.
- W4311454679 cites W2913160016 @default.
- W4311454679 cites W2924355952 @default.
- W4311454679 cites W2940726923 @default.
- W4311454679 cites W2945385604 @default.
- W4311454679 cites W2951982261 @default.
- W4311454679 cites W2952956606 @default.
- W4311454679 cites W2966450079 @default.
- W4311454679 cites W2966629941 @default.
- W4311454679 cites W2966851014 @default.
- W4311454679 cites W2980881023 @default.
- W4311454679 cites W2990316710 @default.
- W4311454679 cites W2991591719 @default.
- W4311454679 cites W2999993353 @default.
- W4311454679 cites W3003918477 @default.
- W4311454679 cites W3007268491 @default.
- W4311454679 cites W3008439211 @default.
- W4311454679 cites W3021297918 @default.
- W4311454679 cites W3025172026 @default.
- W4311454679 cites W3027629341 @default.
- W4311454679 cites W3035768028 @default.
- W4311454679 cites W3037640242 @default.
- W4311454679 cites W3044439402 @default.
- W4311454679 cites W3045606376 @default.
- W4311454679 cites W3088162569 @default.
- W4311454679 cites W3097823855 @default.
- W4311454679 cites W3104369000 @default.
- W4311454679 cites W3138211645 @default.
- W4311454679 cites W3158553145 @default.
- W4311454679 cites W3158891302 @default.
- W4311454679 cites W3162672913 @default.
- W4311454679 cites W3173527685 @default.
- W4311454679 cites W3175687857 @default.
- W4311454679 cites W3177435843 @default.
- W4311454679 cites W3184324897 @default.
- W4311454679 cites W3185111473 @default.
- W4311454679 cites W3185689123 @default.
- W4311454679 cites W3188024472 @default.
- W4311454679 cites W3211238947 @default.
- W4311454679 cites W4200029630 @default.
- W4311454679 cites W4200217357 @default.
- W4311454679 cites W4234233274 @default.
- W4311454679 doi "https://doi.org/10.1016/j.rsase.2022.100898" @default.
- W4311454679 hasPublicationYear "2023" @default.
- W4311454679 type Work @default.
- W4311454679 citedByCount "1" @default.
- W4311454679 countsByYear W43114546792023 @default.
- W4311454679 crossrefType "journal-article" @default.
- W4311454679 hasAuthorship W4311454679A5010851974 @default.
- W4311454679 hasAuthorship W4311454679A5012331306 @default.
- W4311454679 hasAuthorship W4311454679A5024154808 @default.
- W4311454679 hasAuthorship W4311454679A5036428276 @default.
- W4311454679 hasAuthorship W4311454679A5038923386 @default.
- W4311454679 hasAuthorship W4311454679A5052306054 @default.
- W4311454679 hasAuthorship W4311454679A5062067641 @default.
- W4311454679 hasAuthorship W4311454679A5069092734 @default.
- W4311454679 hasAuthorship W4311454679A5074569979 @default.
- W4311454679 hasAuthorship W4311454679A5081118161 @default.
- W4311454679 hasConcept C108583219 @default.
- W4311454679 hasConcept C11413529 @default.
- W4311454679 hasConcept C119857082 @default.
- W4311454679 hasConcept C127413603 @default.
- W4311454679 hasConcept C146978453 @default.
- W4311454679 hasConcept C153180895 @default.
- W4311454679 hasConcept C154945302 @default.
- W4311454679 hasConcept C155512373 @default.
- W4311454679 hasConcept C16678853 @default.
- W4311454679 hasConcept C166957645 @default.
- W4311454679 hasConcept C19269812 @default.
- W4311454679 hasConcept C205649164 @default.
- W4311454679 hasConcept C41008148 @default.