Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311457546> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4311457546 abstract "Recently, Internet of Things (IoT) systems in the network edge with embedded intelligence emerged as a trending research topic. Edge computing offers a significant advantage over the traditional form of sharing personal data with a centralized entity since the latter paradigm may affect the user’s privacy, e.g., due to explicit exchange of sensitive biomedical data. To address this inherent data privacy issue, in this paper, we focus on designing an asynchronously weight updating federated learning algorithm toward the much anticipated AI-on-Edge IoT systems. Among numerous use-cases, we consider the face mask detection problem, which is traditionally considered as a centralized computer vision task. We take a different approach to distribute the learning tasks to the users in a federated learning framework, and then investigate the performance trade-off between synchronous and asynchronously weight updating methods. In our proposed system, the models are penalized by their performance metrics to limit a model’s participation in the aggregation stage. By developing the asynchronously weight updating method for deep learning (e.g., Convolutional Neural Network (CNN)) models, we also investigate its impact on model parameters exchange with the centralized aggregator. Experimental results demonstrate that our proposed asynchronously weight updating method achieves results comparable to those attained with the centralized training and the synchronously weight updating strategy. Also, we provide numerical analysis to demonstrate a significant transmission time overhead with our proposal." @default.
- W4311457546 created "2022-12-26" @default.
- W4311457546 creator A5026035473 @default.
- W4311457546 creator A5063911030 @default.
- W4311457546 creator A5068882573 @default.
- W4311457546 date "2022-11-24" @default.
- W4311457546 modified "2023-09-28" @default.
- W4311457546 title "Toward Asynchronously Weight Updating Federated Learning for AI-on-Edge IoT Systems" @default.
- W4311457546 cites W2100917613 @default.
- W4311457546 cites W2618530766 @default.
- W4311457546 cites W2885976210 @default.
- W4311457546 cites W2998045710 @default.
- W4311457546 cites W3016083407 @default.
- W4311457546 cites W3034552680 @default.
- W4311457546 cites W3045576536 @default.
- W4311457546 cites W3101998545 @default.
- W4311457546 cites W3133055346 @default.
- W4311457546 cites W3162472108 @default.
- W4311457546 cites W3212010319 @default.
- W4311457546 cites W4200150912 @default.
- W4311457546 doi "https://doi.org/10.1109/iotais56727.2022.9975908" @default.
- W4311457546 hasPublicationYear "2022" @default.
- W4311457546 type Work @default.
- W4311457546 citedByCount "0" @default.
- W4311457546 crossrefType "proceedings-article" @default.
- W4311457546 hasAuthorship W4311457546A5026035473 @default.
- W4311457546 hasAuthorship W4311457546A5063911030 @default.
- W4311457546 hasAuthorship W4311457546A5068882573 @default.
- W4311457546 hasConcept C108583219 @default.
- W4311457546 hasConcept C111919701 @default.
- W4311457546 hasConcept C119857082 @default.
- W4311457546 hasConcept C120314980 @default.
- W4311457546 hasConcept C120665830 @default.
- W4311457546 hasConcept C121332964 @default.
- W4311457546 hasConcept C136764020 @default.
- W4311457546 hasConcept C138236772 @default.
- W4311457546 hasConcept C154945302 @default.
- W4311457546 hasConcept C162307627 @default.
- W4311457546 hasConcept C180505990 @default.
- W4311457546 hasConcept C192209626 @default.
- W4311457546 hasConcept C2778456923 @default.
- W4311457546 hasConcept C2779960059 @default.
- W4311457546 hasConcept C41008148 @default.
- W4311457546 hasConcept C79974875 @default.
- W4311457546 hasConcept C81363708 @default.
- W4311457546 hasConceptScore W4311457546C108583219 @default.
- W4311457546 hasConceptScore W4311457546C111919701 @default.
- W4311457546 hasConceptScore W4311457546C119857082 @default.
- W4311457546 hasConceptScore W4311457546C120314980 @default.
- W4311457546 hasConceptScore W4311457546C120665830 @default.
- W4311457546 hasConceptScore W4311457546C121332964 @default.
- W4311457546 hasConceptScore W4311457546C136764020 @default.
- W4311457546 hasConceptScore W4311457546C138236772 @default.
- W4311457546 hasConceptScore W4311457546C154945302 @default.
- W4311457546 hasConceptScore W4311457546C162307627 @default.
- W4311457546 hasConceptScore W4311457546C180505990 @default.
- W4311457546 hasConceptScore W4311457546C192209626 @default.
- W4311457546 hasConceptScore W4311457546C2778456923 @default.
- W4311457546 hasConceptScore W4311457546C2779960059 @default.
- W4311457546 hasConceptScore W4311457546C41008148 @default.
- W4311457546 hasConceptScore W4311457546C79974875 @default.
- W4311457546 hasConceptScore W4311457546C81363708 @default.
- W4311457546 hasLocation W43114575461 @default.
- W4311457546 hasOpenAccess W4311457546 @default.
- W4311457546 hasPrimaryLocation W43114575461 @default.
- W4311457546 hasRelatedWork W1990379658 @default.
- W4311457546 hasRelatedWork W2337926734 @default.
- W4311457546 hasRelatedWork W3126969908 @default.
- W4311457546 hasRelatedWork W3131650874 @default.
- W4311457546 hasRelatedWork W4293869292 @default.
- W4311457546 hasRelatedWork W4311257506 @default.
- W4311457546 hasRelatedWork W4313526662 @default.
- W4311457546 hasRelatedWork W4320802194 @default.
- W4311457546 hasRelatedWork W4366224123 @default.
- W4311457546 hasRelatedWork W3125274967 @default.
- W4311457546 isParatext "false" @default.
- W4311457546 isRetracted "false" @default.
- W4311457546 workType "article" @default.