Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311457550> ?p ?o ?g. }
- W4311457550 endingPage "524" @default.
- W4311457550 startingPage "511" @default.
- W4311457550 abstract "Concrete temperature control during dam construction (e.g., concrete placement and curing) is important for cracking prevention. In this study, a short-term temperature forecast model for mass concrete cooling control is developed using artificial neural networks (ANN). The development workflow for the forecast model consists of data integration, data preprocessing, model construction, and model application. More than 80 000 monitoring samples are collected by the developed intelligent cooling control system in the Baihetan Arch Dam, which is the largest hydropower project in the world under construction. Machine learning algorithms, including ANN, support vector machines, long short-term memory networks, and decision tree structures, are compared in temperature prediction, and the ANN is determined to be the best for the forecast model. Furthermore, an ANN framework with two hidden layers is determined to forecast concrete temperature at intervals of one day. The root mean square error of the forecast precision is 0.15 °C on average. The application on concrete blocks verifies that the developed ANN-based forecast model can be used for intelligent cooling control during mass concrete construction." @default.
- W4311457550 created "2022-12-26" @default.
- W4311457550 creator A5021384155 @default.
- W4311457550 creator A5027623456 @default.
- W4311457550 creator A5029458357 @default.
- W4311457550 creator A5064663616 @default.
- W4311457550 creator A5077606362 @default.
- W4311457550 creator A5089551207 @default.
- W4311457550 date "2023-06-01" @default.
- W4311457550 modified "2023-10-16" @default.
- W4311457550 title "An ANN-Based Short-Term Temperature Forecast Model for Mass Concrete Cooling Control" @default.
- W4311457550 cites W1972028276 @default.
- W4311457550 cites W2028238446 @default.
- W4311457550 cites W2034339639 @default.
- W4311457550 cites W2044904233 @default.
- W4311457550 cites W2045187588 @default.
- W4311457550 cites W2049453429 @default.
- W4311457550 cites W2083237586 @default.
- W4311457550 cites W2084075921 @default.
- W4311457550 cites W2153404269 @default.
- W4311457550 cites W2598690643 @default.
- W4311457550 cites W2741429046 @default.
- W4311457550 cites W2792156471 @default.
- W4311457550 cites W2794666208 @default.
- W4311457550 cites W2797631569 @default.
- W4311457550 cites W2803244553 @default.
- W4311457550 cites W2904422090 @default.
- W4311457550 cites W2940225944 @default.
- W4311457550 cites W2969580107 @default.
- W4311457550 cites W3012191999 @default.
- W4311457550 cites W3015701954 @default.
- W4311457550 cites W3017116930 @default.
- W4311457550 cites W3022792077 @default.
- W4311457550 cites W3027182589 @default.
- W4311457550 cites W3037712939 @default.
- W4311457550 cites W3038137878 @default.
- W4311457550 cites W3038412214 @default.
- W4311457550 cites W3042218515 @default.
- W4311457550 cites W3044937214 @default.
- W4311457550 cites W3047421997 @default.
- W4311457550 cites W3080190685 @default.
- W4311457550 cites W3081566594 @default.
- W4311457550 cites W3093178874 @default.
- W4311457550 cites W3126484473 @default.
- W4311457550 cites W3136849819 @default.
- W4311457550 cites W3153764057 @default.
- W4311457550 cites W3185829730 @default.
- W4311457550 cites W3214062507 @default.
- W4311457550 cites W2076089150 @default.
- W4311457550 doi "https://doi.org/10.26599/tst.2022.9010015" @default.
- W4311457550 hasPublicationYear "2023" @default.
- W4311457550 type Work @default.
- W4311457550 citedByCount "0" @default.
- W4311457550 crossrefType "journal-article" @default.
- W4311457550 hasAuthorship W4311457550A5021384155 @default.
- W4311457550 hasAuthorship W4311457550A5027623456 @default.
- W4311457550 hasAuthorship W4311457550A5029458357 @default.
- W4311457550 hasAuthorship W4311457550A5064663616 @default.
- W4311457550 hasAuthorship W4311457550A5077606362 @default.
- W4311457550 hasAuthorship W4311457550A5089551207 @default.
- W4311457550 hasBestOaLocation W43114575501 @default.
- W4311457550 hasConcept C11312509 @default.
- W4311457550 hasConcept C127413603 @default.
- W4311457550 hasConcept C133731056 @default.
- W4311457550 hasConcept C154945302 @default.
- W4311457550 hasConcept C2776423418 @default.
- W4311457550 hasConcept C2778705278 @default.
- W4311457550 hasConcept C41008148 @default.
- W4311457550 hasConcept C50644808 @default.
- W4311457550 hasConcept C536315585 @default.
- W4311457550 hasConcept C66938386 @default.
- W4311457550 hasConceptScore W4311457550C11312509 @default.
- W4311457550 hasConceptScore W4311457550C127413603 @default.
- W4311457550 hasConceptScore W4311457550C133731056 @default.
- W4311457550 hasConceptScore W4311457550C154945302 @default.
- W4311457550 hasConceptScore W4311457550C2776423418 @default.
- W4311457550 hasConceptScore W4311457550C2778705278 @default.
- W4311457550 hasConceptScore W4311457550C41008148 @default.
- W4311457550 hasConceptScore W4311457550C50644808 @default.
- W4311457550 hasConceptScore W4311457550C536315585 @default.
- W4311457550 hasConceptScore W4311457550C66938386 @default.
- W4311457550 hasFunder F4320321001 @default.
- W4311457550 hasIssue "3" @default.
- W4311457550 hasLocation W43114575501 @default.
- W4311457550 hasOpenAccess W4311457550 @default.
- W4311457550 hasPrimaryLocation W43114575501 @default.
- W4311457550 hasRelatedWork W154255128 @default.
- W4311457550 hasRelatedWork W2358675740 @default.
- W4311457550 hasRelatedWork W2362417008 @default.
- W4311457550 hasRelatedWork W2376628380 @default.
- W4311457550 hasRelatedWork W2376712921 @default.
- W4311457550 hasRelatedWork W2379443748 @default.
- W4311457550 hasRelatedWork W2381155985 @default.
- W4311457550 hasRelatedWork W2385591469 @default.
- W4311457550 hasRelatedWork W3139974826 @default.
- W4311457550 hasRelatedWork W3190454952 @default.
- W4311457550 hasVolume "28" @default.
- W4311457550 isParatext "false" @default.