Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311457596> ?p ?o ?g. }
- W4311457596 endingPage "109013" @default.
- W4311457596 startingPage "109013" @default.
- W4311457596 abstract "With the emerging monitoring technologies, condition-based maintenance is nowadays a reality for the wind energy industry. This is important to avoid unnecessary maintenance actions, which increase the operation and maintenance costs, along with the costs associated with downtime. However, condition-based maintenance requires a policy to transform system conditions into decision-making while considering monetary restrictions and energy productivity objectives. To address this challenge, an intelligent Petri net algorithm has been created and applied to model and optimize offshore wind turbines’ operation and maintenance. The proposed method combines advanced Petri net modelling with Reinforcement Learning and is formulated in a general manner so it can be applied to optimize any Petri net model. The resulting methodology is applied to a case study considering the operation and maintenance of a wind turbine using operation and degradation data. The results show that the proposed method is capable to reach optimal condition-based maintenance policy considering maximum availability (equal to 99.4%) and minimal operational costs." @default.
- W4311457596 created "2022-12-26" @default.
- W4311457596 creator A5040513240 @default.
- W4311457596 creator A5066246310 @default.
- W4311457596 creator A5068096683 @default.
- W4311457596 creator A5071505747 @default.
- W4311457596 date "2023-03-01" @default.
- W4311457596 modified "2023-10-14" @default.
- W4311457596 title "Self-adaptive optimized maintenance of offshore wind turbines by intelligent Petri nets" @default.
- W4311457596 cites W1180937571 @default.
- W4311457596 cites W1764196764 @default.
- W4311457596 cites W1794487368 @default.
- W4311457596 cites W1968355292 @default.
- W4311457596 cites W1996109622 @default.
- W4311457596 cites W2006167965 @default.
- W4311457596 cites W2009503760 @default.
- W4311457596 cites W2036013322 @default.
- W4311457596 cites W206679605 @default.
- W4311457596 cites W2080640990 @default.
- W4311457596 cites W2089412873 @default.
- W4311457596 cites W2099618002 @default.
- W4311457596 cites W2113064776 @default.
- W4311457596 cites W2115480970 @default.
- W4311457596 cites W2136769392 @default.
- W4311457596 cites W2137307698 @default.
- W4311457596 cites W2151810463 @default.
- W4311457596 cites W2158814988 @default.
- W4311457596 cites W2185965566 @default.
- W4311457596 cites W2189123562 @default.
- W4311457596 cites W2309825643 @default.
- W4311457596 cites W2584908468 @default.
- W4311457596 cites W2585648289 @default.
- W4311457596 cites W2763405053 @default.
- W4311457596 cites W2779106815 @default.
- W4311457596 cites W2797906474 @default.
- W4311457596 cites W2890426028 @default.
- W4311457596 cites W2898897140 @default.
- W4311457596 cites W2931956067 @default.
- W4311457596 cites W3008389987 @default.
- W4311457596 cites W3014927455 @default.
- W4311457596 cites W3035142085 @default.
- W4311457596 cites W3043495282 @default.
- W4311457596 cites W3088561350 @default.
- W4311457596 cites W3093664514 @default.
- W4311457596 cites W3112980029 @default.
- W4311457596 cites W3120682899 @default.
- W4311457596 cites W3154433737 @default.
- W4311457596 cites W3158411095 @default.
- W4311457596 cites W3211489071 @default.
- W4311457596 cites W3216696800 @default.
- W4311457596 cites W32403112 @default.
- W4311457596 cites W4200222578 @default.
- W4311457596 cites W4213202293 @default.
- W4311457596 cites W4281256337 @default.
- W4311457596 cites W4281628183 @default.
- W4311457596 cites W4281710540 @default.
- W4311457596 cites W4294484493 @default.
- W4311457596 doi "https://doi.org/10.1016/j.ress.2022.109013" @default.
- W4311457596 hasPublicationYear "2023" @default.
- W4311457596 type Work @default.
- W4311457596 citedByCount "7" @default.
- W4311457596 countsByYear W43114575962023 @default.
- W4311457596 crossrefType "journal-article" @default.
- W4311457596 hasAuthorship W4311457596A5040513240 @default.
- W4311457596 hasAuthorship W4311457596A5066246310 @default.
- W4311457596 hasAuthorship W4311457596A5068096683 @default.
- W4311457596 hasAuthorship W4311457596A5071505747 @default.
- W4311457596 hasBestOaLocation W43114575961 @default.
- W4311457596 hasConcept C119599485 @default.
- W4311457596 hasConcept C120314980 @default.
- W4311457596 hasConcept C127413603 @default.
- W4311457596 hasConcept C141417316 @default.
- W4311457596 hasConcept C180591934 @default.
- W4311457596 hasConcept C200601418 @default.
- W4311457596 hasConcept C2776671899 @default.
- W4311457596 hasConcept C2776907094 @default.
- W4311457596 hasConcept C2778449969 @default.
- W4311457596 hasConcept C2778814095 @default.
- W4311457596 hasConcept C38677869 @default.
- W4311457596 hasConcept C41008148 @default.
- W4311457596 hasConcept C42475967 @default.
- W4311457596 hasConcept C70452415 @default.
- W4311457596 hasConcept C78519656 @default.
- W4311457596 hasConcept C78600449 @default.
- W4311457596 hasConcept C8735168 @default.
- W4311457596 hasConceptScore W4311457596C119599485 @default.
- W4311457596 hasConceptScore W4311457596C120314980 @default.
- W4311457596 hasConceptScore W4311457596C127413603 @default.
- W4311457596 hasConceptScore W4311457596C141417316 @default.
- W4311457596 hasConceptScore W4311457596C180591934 @default.
- W4311457596 hasConceptScore W4311457596C200601418 @default.
- W4311457596 hasConceptScore W4311457596C2776671899 @default.
- W4311457596 hasConceptScore W4311457596C2776907094 @default.
- W4311457596 hasConceptScore W4311457596C2778449969 @default.
- W4311457596 hasConceptScore W4311457596C2778814095 @default.
- W4311457596 hasConceptScore W4311457596C38677869 @default.
- W4311457596 hasConceptScore W4311457596C41008148 @default.
- W4311457596 hasConceptScore W4311457596C42475967 @default.