Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311458840> ?p ?o ?g. }
- W4311458840 abstract "Abstract Changing patterns of weather and climate are limiting breeders’ ability to conduct trials in the same environments in which their released varieties will be grown 7-10 years later. Flowering time plays a crucial role in determining regional adaptation, and mismatch between flowering time and environment can substantially impair yield. Different approaches based on genetic markers or gene expression can be used to predict flowering time before conducting large scale field evaluation and phenotyping. The more accurate prediction of a trait using genetic markers could be hindered due to all the intermediate steps (i.e. transcription, translation, epigenetic modification, and epistasis among others) connecting the trait and their genetic basics. The use of some intermediate steps as predictors could improve the accuracy of the model. Here, we are using two public gene expression (RNA-Seq) data-sets from 14-day-old-maize-seedling roots and whole-seedling tissue at v1 stage (10 day after planting) for which flowering data (days to anthesis and days to silking expressed in growing degree days) and genetic markers were also available to test the predictability of flowering time. In total, 20 different combinations between phenotypic and gene expression data-sets were evaluated. To explore prediction accuracy a random forest model was trained with the expression values of 44,303 gene models hosted in the current B73 maize reference version 5 and then the feature importance was scored based on the decrease in root mean squared error. Later several random forest models with different subsets of the most important features (genes) were trained, and this process was repeated ten times. Results from these analyses show a curve in the prediction accuracy, with an increase in the prediction accuracy as the top most important genes were added. The maximum accuracy was attained when 500 genes for whole-seedling and 100 genes for root gene expression data were used in the analysis, and thereafter adding more genes lead to a decrease in the prediction accuracy. The highest prediction accuracy using the top-most important genes was higher than that of using randomly selected whole-genome 400,000 SNPs. Finally, we described the genes controlling flowering time by looking at the most important genes in the Random forest model with the expression data from all genes. We further found MADS-transcription factor 69 ( Mads69 ) using whole-seedling gene expression and the MADS-transcription factor 67 ( Mads67 ) using root gene expression data, both genes previously described with effect on flowering time. Here, we aim to demonstrate the potential of selecting and using the expression of most informative genes to predict a complex trait, also to demonstrate the robustness and limitations of this analysis by using phenotypic data-sets from different environments." @default.
- W4311458840 created "2022-12-26" @default.
- W4311458840 creator A5027711507 @default.
- W4311458840 creator A5048302859 @default.
- W4311458840 creator A5061385817 @default.
- W4311458840 creator A5090275077 @default.
- W4311458840 date "2022-12-14" @default.
- W4311458840 modified "2023-10-15" @default.
- W4311458840 title "Measurement of expression from a limited number of genes is sufficient to predict flowering time in maize" @default.
- W4311458840 cites W1566910412 @default.
- W4311458840 cites W1980418450 @default.
- W4311458840 cites W2005393148 @default.
- W4311458840 cites W2014704298 @default.
- W4311458840 cites W2025947856 @default.
- W4311458840 cites W2059699824 @default.
- W4311458840 cites W2060384656 @default.
- W4311458840 cites W2064013109 @default.
- W4311458840 cites W2068069733 @default.
- W4311458840 cites W2074981513 @default.
- W4311458840 cites W2093264600 @default.
- W4311458840 cites W2110035718 @default.
- W4311458840 cites W2123912338 @default.
- W4311458840 cites W2125066647 @default.
- W4311458840 cites W2127843966 @default.
- W4311458840 cites W2131271579 @default.
- W4311458840 cites W2145928478 @default.
- W4311458840 cites W2155920093 @default.
- W4311458840 cites W2224056471 @default.
- W4311458840 cites W2323326409 @default.
- W4311458840 cites W2586766361 @default.
- W4311458840 cites W2773068211 @default.
- W4311458840 cites W2792329433 @default.
- W4311458840 cites W2793422535 @default.
- W4311458840 cites W2806948745 @default.
- W4311458840 cites W2809409242 @default.
- W4311458840 cites W2911964244 @default.
- W4311458840 cites W2919887109 @default.
- W4311458840 cites W2921183496 @default.
- W4311458840 cites W2955433745 @default.
- W4311458840 cites W2973147610 @default.
- W4311458840 cites W2981528944 @default.
- W4311458840 cites W3037171135 @default.
- W4311458840 cites W3100997721 @default.
- W4311458840 cites W3112688983 @default.
- W4311458840 cites W3183178934 @default.
- W4311458840 cites W3189525949 @default.
- W4311458840 cites W4210445938 @default.
- W4311458840 cites W4292702117 @default.
- W4311458840 cites W4297830875 @default.
- W4311458840 doi "https://doi.org/10.1101/2022.12.12.520168" @default.
- W4311458840 hasPublicationYear "2022" @default.
- W4311458840 type Work @default.
- W4311458840 citedByCount "0" @default.
- W4311458840 crossrefType "posted-content" @default.
- W4311458840 hasAuthorship W4311458840A5027711507 @default.
- W4311458840 hasAuthorship W4311458840A5048302859 @default.
- W4311458840 hasAuthorship W4311458840A5061385817 @default.
- W4311458840 hasAuthorship W4311458840A5090275077 @default.
- W4311458840 hasBestOaLocation W43114588401 @default.
- W4311458840 hasConcept C104317684 @default.
- W4311458840 hasConcept C105795698 @default.
- W4311458840 hasConcept C106934330 @default.
- W4311458840 hasConcept C150194340 @default.
- W4311458840 hasConcept C197321923 @default.
- W4311458840 hasConcept C197640229 @default.
- W4311458840 hasConcept C199360897 @default.
- W4311458840 hasConcept C2776096895 @default.
- W4311458840 hasConcept C2780512892 @default.
- W4311458840 hasConcept C33923547 @default.
- W4311458840 hasConcept C41008148 @default.
- W4311458840 hasConcept C54355233 @default.
- W4311458840 hasConcept C61727976 @default.
- W4311458840 hasConcept C6557445 @default.
- W4311458840 hasConcept C81941488 @default.
- W4311458840 hasConcept C86803240 @default.
- W4311458840 hasConceptScore W4311458840C104317684 @default.
- W4311458840 hasConceptScore W4311458840C105795698 @default.
- W4311458840 hasConceptScore W4311458840C106934330 @default.
- W4311458840 hasConceptScore W4311458840C150194340 @default.
- W4311458840 hasConceptScore W4311458840C197321923 @default.
- W4311458840 hasConceptScore W4311458840C197640229 @default.
- W4311458840 hasConceptScore W4311458840C199360897 @default.
- W4311458840 hasConceptScore W4311458840C2776096895 @default.
- W4311458840 hasConceptScore W4311458840C2780512892 @default.
- W4311458840 hasConceptScore W4311458840C33923547 @default.
- W4311458840 hasConceptScore W4311458840C41008148 @default.
- W4311458840 hasConceptScore W4311458840C54355233 @default.
- W4311458840 hasConceptScore W4311458840C61727976 @default.
- W4311458840 hasConceptScore W4311458840C6557445 @default.
- W4311458840 hasConceptScore W4311458840C81941488 @default.
- W4311458840 hasConceptScore W4311458840C86803240 @default.
- W4311458840 hasLocation W43114588401 @default.
- W4311458840 hasOpenAccess W4311458840 @default.
- W4311458840 hasPrimaryLocation W43114588401 @default.
- W4311458840 hasRelatedWork W1993562561 @default.
- W4311458840 hasRelatedWork W1996840382 @default.
- W4311458840 hasRelatedWork W2008861886 @default.
- W4311458840 hasRelatedWork W2018902800 @default.
- W4311458840 hasRelatedWork W2059826087 @default.
- W4311458840 hasRelatedWork W2084453486 @default.