Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311458897> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4311458897 abstract "Abstract Longitudinal multi-dimensional biological datasets are ubiquitous and highly abundant. These datasets are essential to understanding disease progression, identifying subtypes, and drug discovery. Discovering meaningful patterns or disease pathophysiologies in these datasets is challenging due to their high dimensionality, making it difficult to visualize hidden patterns. Several methods have been developed for dimensionality reduction, but they are limited to cross-sectional datasets. Recently proposed Aligned-UMAP, an extension of the UMAP algorithm, can visualize high-dimensional longitudinal datasets. In this work, we applied Aligned-UMAP on a broad spectrum of clinical, imaging, proteomics, and single-cell datasets. Aligned-UMAP reveals time-dependent hidden patterns when color-coded with the metadata. We found that the algorithm parameters also play a crucial role and must be tuned carefully to utilize the algorithm’s potential fully. Altogether, based on its ease of use and our evaluation of its performance on different modalities, we anticipate that Aligned-UMAP will be a valuable tool for the biomedical community. We also believe our benchmarking study becomes more important as more and more high-dimensional longitudinal data in biomedical research becomes available. Highlights - explored the utility of Aligned-UMAP in longitudinal biomedical datasets - offer insights on optimal uses for the technique - provide recommendations for best practices In Brief High-dimensional longitudinal data is prevalent yet understudied in biological literature. High-dimensional data analysis starts with projecting the data to low dimensions to visualize and understand the underlying data structure. Though few methods are available for visualizing high dimensional longitudinal data, they are not studied extensively in real-world biological datasets. A recently developed nonlinear dimensionality reduction technique, Aligned-UMAP, analyzes sequential data. Here, we give an overview of applications of Aligned-UMAP on various biomedical datasets. We further provide recommendations for best practices and offer insights on optimal uses for the technique." @default.
- W4311458897 created "2022-12-26" @default.
- W4311458897 creator A5010629606 @default.
- W4311458897 creator A5027663167 @default.
- W4311458897 creator A5039117237 @default.
- W4311458897 creator A5041676520 @default.
- W4311458897 creator A5042831687 @default.
- W4311458897 creator A5046319503 @default.
- W4311458897 creator A5057555985 @default.
- W4311458897 creator A5064191051 @default.
- W4311458897 creator A5065622216 @default.
- W4311458897 creator A5067789366 @default.
- W4311458897 creator A5069326318 @default.
- W4311458897 creator A5072408103 @default.
- W4311458897 creator A5075208338 @default.
- W4311458897 creator A5089221594 @default.
- W4311458897 creator A5090408123 @default.
- W4311458897 creator A5091001932 @default.
- W4311458897 date "2022-12-14" @default.
- W4311458897 modified "2023-10-17" @default.
- W4311458897 title "Application of Aligned-UMAP to longitudinal biomedical studies" @default.
- W4311458897 cites W2140978740 @default.
- W4311458897 cites W2144182447 @default.
- W4311458897 cites W2165758561 @default.
- W4311458897 cites W2295124130 @default.
- W4311458897 cites W2610774430 @default.
- W4311458897 cites W2748099698 @default.
- W4311458897 cites W2807157443 @default.
- W4311458897 cites W2889326414 @default.
- W4311458897 cites W2901323504 @default.
- W4311458897 cites W2902652978 @default.
- W4311458897 cites W2957430216 @default.
- W4311458897 cites W2978264531 @default.
- W4311458897 cites W3043344901 @default.
- W4311458897 cites W3092803354 @default.
- W4311458897 cites W3158596096 @default.
- W4311458897 cites W3159431441 @default.
- W4311458897 cites W3216857403 @default.
- W4311458897 cites W4220866178 @default.
- W4311458897 cites W4290005329 @default.
- W4311458897 doi "https://doi.org/10.1101/2022.12.12.518225" @default.
- W4311458897 hasPublicationYear "2022" @default.
- W4311458897 type Work @default.
- W4311458897 citedByCount "0" @default.
- W4311458897 crossrefType "posted-content" @default.
- W4311458897 hasAuthorship W4311458897A5010629606 @default.
- W4311458897 hasAuthorship W4311458897A5027663167 @default.
- W4311458897 hasAuthorship W4311458897A5039117237 @default.
- W4311458897 hasAuthorship W4311458897A5041676520 @default.
- W4311458897 hasAuthorship W4311458897A5042831687 @default.
- W4311458897 hasAuthorship W4311458897A5046319503 @default.
- W4311458897 hasAuthorship W4311458897A5057555985 @default.
- W4311458897 hasAuthorship W4311458897A5064191051 @default.
- W4311458897 hasAuthorship W4311458897A5065622216 @default.
- W4311458897 hasAuthorship W4311458897A5067789366 @default.
- W4311458897 hasAuthorship W4311458897A5069326318 @default.
- W4311458897 hasAuthorship W4311458897A5072408103 @default.
- W4311458897 hasAuthorship W4311458897A5075208338 @default.
- W4311458897 hasAuthorship W4311458897A5089221594 @default.
- W4311458897 hasAuthorship W4311458897A5090408123 @default.
- W4311458897 hasAuthorship W4311458897A5091001932 @default.
- W4311458897 hasBestOaLocation W43114588971 @default.
- W4311458897 hasConcept C111919701 @default.
- W4311458897 hasConcept C119857082 @default.
- W4311458897 hasConcept C124101348 @default.
- W4311458897 hasConcept C144133560 @default.
- W4311458897 hasConcept C154945302 @default.
- W4311458897 hasConcept C162853370 @default.
- W4311458897 hasConcept C2522767166 @default.
- W4311458897 hasConcept C41008148 @default.
- W4311458897 hasConcept C70518039 @default.
- W4311458897 hasConcept C86251818 @default.
- W4311458897 hasConcept C93518851 @default.
- W4311458897 hasConceptScore W4311458897C111919701 @default.
- W4311458897 hasConceptScore W4311458897C119857082 @default.
- W4311458897 hasConceptScore W4311458897C124101348 @default.
- W4311458897 hasConceptScore W4311458897C144133560 @default.
- W4311458897 hasConceptScore W4311458897C154945302 @default.
- W4311458897 hasConceptScore W4311458897C162853370 @default.
- W4311458897 hasConceptScore W4311458897C2522767166 @default.
- W4311458897 hasConceptScore W4311458897C41008148 @default.
- W4311458897 hasConceptScore W4311458897C70518039 @default.
- W4311458897 hasConceptScore W4311458897C86251818 @default.
- W4311458897 hasConceptScore W4311458897C93518851 @default.
- W4311458897 hasLocation W43114588971 @default.
- W4311458897 hasOpenAccess W4311458897 @default.
- W4311458897 hasPrimaryLocation W43114588971 @default.
- W4311458897 hasRelatedWork W2381351160 @default.
- W4311458897 hasRelatedWork W2806031239 @default.
- W4311458897 hasRelatedWork W2906467684 @default.
- W4311458897 hasRelatedWork W2909369566 @default.
- W4311458897 hasRelatedWork W2922457425 @default.
- W4311458897 hasRelatedWork W3116187740 @default.
- W4311458897 hasRelatedWork W3215380763 @default.
- W4311458897 hasRelatedWork W4250304930 @default.
- W4311458897 hasRelatedWork W4295681619 @default.
- W4311458897 hasRelatedWork W4312393190 @default.
- W4311458897 isParatext "false" @default.
- W4311458897 isRetracted "false" @default.
- W4311458897 workType "article" @default.