Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311459430> ?p ?o ?g. }
- W4311459430 endingPage "105177" @default.
- W4311459430 startingPage "105177" @default.
- W4311459430 abstract "Physics-informed neural networks (PINN) can solve partial differential equations (PDEs) by encoding the mathematical information explicitly into the loss functions. In the context of plasticity, discussions of PINN have only focused on small-strain formulations. We present a framework of finite-strain elasto-plasticity for PINN, considering rate-independent isotropic hardening in this work. Details of the model architecture are discussed, including inputs and outputs of the neural network and the construction of the loss function that incorporates equilibrium equations, boundary conditions and constitutive relations. In addition, the overall architecture can learn the constitutive relations from discrete measurements on a stress–strain curve, hence eliminating the need for modeling hardening law in the formulation. We demonstrate the performance of PINN through a numerical example that includes a multi-step loading and unloading history. Moreover, we assess the performance of PINN in terms of its accuracy and robustness under mesh refinement and as a function of the network architecture design. Displacement, Cauchy stress and accumulated plastic strain fields are compared to the finite element results for the same problem for the purposes of this assessment, which is intended to provide insight and guidance for the future designs of PINN for plasticity and related problems in solid mechanics." @default.
- W4311459430 created "2022-12-26" @default.
- W4311459430 creator A5008702731 @default.
- W4311459430 creator A5028800510 @default.
- W4311459430 creator A5038126740 @default.
- W4311459430 creator A5061668124 @default.
- W4311459430 date "2023-03-01" @default.
- W4311459430 modified "2023-10-14" @default.
- W4311459430 title "Modeling finite-strain plasticity using physics-informed neural network and assessment of the network performance" @default.
- W4311459430 cites W1019830208 @default.
- W4311459430 cites W2054662898 @default.
- W4311459430 cites W2091421690 @default.
- W4311459430 cites W2137983211 @default.
- W4311459430 cites W2161215684 @default.
- W4311459430 cites W2261676784 @default.
- W4311459430 cites W2585298970 @default.
- W4311459430 cites W2790625295 @default.
- W4311459430 cites W2889287912 @default.
- W4311459430 cites W2890968382 @default.
- W4311459430 cites W2897638365 @default.
- W4311459430 cites W2899283552 @default.
- W4311459430 cites W2899643870 @default.
- W4311459430 cites W2920968208 @default.
- W4311459430 cites W2969381807 @default.
- W4311459430 cites W2969418368 @default.
- W4311459430 cites W2973046831 @default.
- W4311459430 cites W2996028791 @default.
- W4311459430 cites W2998847955 @default.
- W4311459430 cites W2999772350 @default.
- W4311459430 cites W3003922491 @default.
- W4311459430 cites W3004450693 @default.
- W4311459430 cites W3010849941 @default.
- W4311459430 cites W3011714719 @default.
- W4311459430 cites W3021801979 @default.
- W4311459430 cites W3028009715 @default.
- W4311459430 cites W3028072861 @default.
- W4311459430 cites W3047001618 @default.
- W4311459430 cites W3098546160 @default.
- W4311459430 cites W3099057226 @default.
- W4311459430 cites W3116268267 @default.
- W4311459430 cites W3119602513 @default.
- W4311459430 cites W3137392741 @default.
- W4311459430 cites W3171275160 @default.
- W4311459430 cites W3196683227 @default.
- W4311459430 cites W3197473870 @default.
- W4311459430 cites W3201282075 @default.
- W4311459430 cites W3201666041 @default.
- W4311459430 cites W3208492199 @default.
- W4311459430 cites W3213846592 @default.
- W4311459430 cites W4200633382 @default.
- W4311459430 cites W4210423197 @default.
- W4311459430 cites W4213199992 @default.
- W4311459430 cites W4214668084 @default.
- W4311459430 cites W4225422786 @default.
- W4311459430 cites W4280546477 @default.
- W4311459430 cites W4293060638 @default.
- W4311459430 cites W4307154444 @default.
- W4311459430 cites W2024107820 @default.
- W4311459430 doi "https://doi.org/10.1016/j.jmps.2022.105177" @default.
- W4311459430 hasPublicationYear "2023" @default.
- W4311459430 type Work @default.
- W4311459430 citedByCount "6" @default.
- W4311459430 countsByYear W43114594302023 @default.
- W4311459430 crossrefType "journal-article" @default.
- W4311459430 hasAuthorship W4311459430A5008702731 @default.
- W4311459430 hasAuthorship W4311459430A5028800510 @default.
- W4311459430 hasAuthorship W4311459430A5038126740 @default.
- W4311459430 hasAuthorship W4311459430A5061668124 @default.
- W4311459430 hasConcept C104317684 @default.
- W4311459430 hasConcept C121332964 @default.
- W4311459430 hasConcept C126255220 @default.
- W4311459430 hasConcept C127413603 @default.
- W4311459430 hasConcept C134306372 @default.
- W4311459430 hasConcept C135628077 @default.
- W4311459430 hasConcept C151730666 @default.
- W4311459430 hasConcept C154945302 @default.
- W4311459430 hasConcept C182310444 @default.
- W4311459430 hasConcept C184050105 @default.
- W4311459430 hasConcept C185592680 @default.
- W4311459430 hasConcept C202973686 @default.
- W4311459430 hasConcept C2779343474 @default.
- W4311459430 hasConcept C28826006 @default.
- W4311459430 hasConcept C33923547 @default.
- W4311459430 hasConcept C41008148 @default.
- W4311459430 hasConcept C49344536 @default.
- W4311459430 hasConcept C50644808 @default.
- W4311459430 hasConcept C55493867 @default.
- W4311459430 hasConcept C62520636 @default.
- W4311459430 hasConcept C63479239 @default.
- W4311459430 hasConcept C66938386 @default.
- W4311459430 hasConcept C79186407 @default.
- W4311459430 hasConcept C86803240 @default.
- W4311459430 hasConcept C97355855 @default.
- W4311459430 hasConceptScore W4311459430C104317684 @default.
- W4311459430 hasConceptScore W4311459430C121332964 @default.
- W4311459430 hasConceptScore W4311459430C126255220 @default.
- W4311459430 hasConceptScore W4311459430C127413603 @default.
- W4311459430 hasConceptScore W4311459430C134306372 @default.