Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311462465> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4311462465 endingPage "100621" @default.
- W4311462465 startingPage "100621" @default.
- W4311462465 abstract "Researchers desperately ought to build an efficient turbine problem detection & simulation environment given the quick increase in wind energy capacity and the steadily rising operational cost duration of wind generators. The two aspects of fault identification & fault prediction are employed to describe the primary problem features of wind generators. We examine and synthesize the studies on fault detection techniques that rely on vibrating, electrical impulse evaluation, and pattern matching to address the challenging difficulties of defect detection. During the same period, we highlight the computationally efficient, constraints, and potential directions of distinct approaches. We review recent study developments & suggest a defect forecasting model that utilizes a physical breakdown prototype with data analysis theory fused depending on the mechanics and electronic subsystem degradation features of wind energy. In this study, we employ the Internet of Things (IoT) on Deep Learning (DL) architecture to forecast and identify wind energy generation issues. The testing findings demonstrate the method's ability to diagnose faults logically and forecast their types." @default.
- W4311462465 created "2022-12-26" @default.
- W4311462465 creator A5015145813 @default.
- W4311462465 creator A5029872200 @default.
- W4311462465 creator A5032102051 @default.
- W4311462465 creator A5064191776 @default.
- W4311462465 creator A5066646687 @default.
- W4311462465 creator A5067487137 @default.
- W4311462465 date "2023-02-01" @default.
- W4311462465 modified "2023-10-18" @default.
- W4311462465 title "Faulty diagnostics model for wind power plant application using AI" @default.
- W4311462465 cites W2397159018 @default.
- W4311462465 cites W3122032019 @default.
- W4311462465 cites W3155460062 @default.
- W4311462465 cites W3159362263 @default.
- W4311462465 cites W3182118358 @default.
- W4311462465 cites W3201253225 @default.
- W4311462465 cites W3202450620 @default.
- W4311462465 cites W4225325457 @default.
- W4311462465 cites W4225767112 @default.
- W4311462465 doi "https://doi.org/10.1016/j.measen.2022.100621" @default.
- W4311462465 hasPublicationYear "2023" @default.
- W4311462465 type Work @default.
- W4311462465 citedByCount "1" @default.
- W4311462465 countsByYear W43114624652023 @default.
- W4311462465 crossrefType "journal-article" @default.
- W4311462465 hasAuthorship W4311462465A5015145813 @default.
- W4311462465 hasAuthorship W4311462465A5029872200 @default.
- W4311462465 hasAuthorship W4311462465A5032102051 @default.
- W4311462465 hasAuthorship W4311462465A5064191776 @default.
- W4311462465 hasAuthorship W4311462465A5066646687 @default.
- W4311462465 hasAuthorship W4311462465A5067487137 @default.
- W4311462465 hasBestOaLocation W43114624651 @default.
- W4311462465 hasConcept C116834253 @default.
- W4311462465 hasConcept C119599485 @default.
- W4311462465 hasConcept C121332964 @default.
- W4311462465 hasConcept C127313418 @default.
- W4311462465 hasConcept C127413603 @default.
- W4311462465 hasConcept C146978453 @default.
- W4311462465 hasConcept C152745839 @default.
- W4311462465 hasConcept C154945302 @default.
- W4311462465 hasConcept C165205528 @default.
- W4311462465 hasConcept C172707124 @default.
- W4311462465 hasConcept C175551986 @default.
- W4311462465 hasConcept C188573790 @default.
- W4311462465 hasConcept C200601418 @default.
- W4311462465 hasConcept C2778449969 @default.
- W4311462465 hasConcept C41008148 @default.
- W4311462465 hasConcept C59822182 @default.
- W4311462465 hasConcept C62520636 @default.
- W4311462465 hasConcept C70836080 @default.
- W4311462465 hasConcept C78600449 @default.
- W4311462465 hasConcept C79403827 @default.
- W4311462465 hasConcept C86803240 @default.
- W4311462465 hasConceptScore W4311462465C116834253 @default.
- W4311462465 hasConceptScore W4311462465C119599485 @default.
- W4311462465 hasConceptScore W4311462465C121332964 @default.
- W4311462465 hasConceptScore W4311462465C127313418 @default.
- W4311462465 hasConceptScore W4311462465C127413603 @default.
- W4311462465 hasConceptScore W4311462465C146978453 @default.
- W4311462465 hasConceptScore W4311462465C152745839 @default.
- W4311462465 hasConceptScore W4311462465C154945302 @default.
- W4311462465 hasConceptScore W4311462465C165205528 @default.
- W4311462465 hasConceptScore W4311462465C172707124 @default.
- W4311462465 hasConceptScore W4311462465C175551986 @default.
- W4311462465 hasConceptScore W4311462465C188573790 @default.
- W4311462465 hasConceptScore W4311462465C200601418 @default.
- W4311462465 hasConceptScore W4311462465C2778449969 @default.
- W4311462465 hasConceptScore W4311462465C41008148 @default.
- W4311462465 hasConceptScore W4311462465C59822182 @default.
- W4311462465 hasConceptScore W4311462465C62520636 @default.
- W4311462465 hasConceptScore W4311462465C70836080 @default.
- W4311462465 hasConceptScore W4311462465C78600449 @default.
- W4311462465 hasConceptScore W4311462465C79403827 @default.
- W4311462465 hasConceptScore W4311462465C86803240 @default.
- W4311462465 hasLocation W43114624651 @default.
- W4311462465 hasOpenAccess W4311462465 @default.
- W4311462465 hasPrimaryLocation W43114624651 @default.
- W4311462465 hasRelatedWork W1973143765 @default.
- W4311462465 hasRelatedWork W2009641913 @default.
- W4311462465 hasRelatedWork W2344352336 @default.
- W4311462465 hasRelatedWork W2462395553 @default.
- W4311462465 hasRelatedWork W2768314333 @default.
- W4311462465 hasRelatedWork W2810122154 @default.
- W4311462465 hasRelatedWork W2908122050 @default.
- W4311462465 hasRelatedWork W4323657282 @default.
- W4311462465 hasRelatedWork W4360995596 @default.
- W4311462465 hasRelatedWork W4376608602 @default.
- W4311462465 hasVolume "25" @default.
- W4311462465 isParatext "false" @default.
- W4311462465 isRetracted "false" @default.
- W4311462465 workType "article" @default.