Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311463321> ?p ?o ?g. }
- W4311463321 endingPage "103212" @default.
- W4311463321 startingPage "103212" @default.
- W4311463321 abstract "The massive number of Internet of Things (IoT) devices connected to the Internet is continuously increasing. The operations of these devices rely on consuming huge amounts of energy. Power limitation is a major issue hindering the operation of IoT applications and services. To improve operational visibility, Low-power devices which constitute IoT networks, drive the need for sustainable sources of energy to carry out their tasks for a prolonged period of time. Moreover, the means to ensure energy sustainability and QoS must consider the stochastic nature of the energy supplies and dynamic IoT environments. Artificial Intelligence (AI) enhanced protocols and algorithms are capable of predicting and forecasting demand as well as providing leverage at different stages of energy use to supply. AI will improve the efficiency of energy infrastructure and decrease waste in distributed energy systems, ensuring their long-term viability. In this paper, we conduct a survey to explore enhanced AI-based solutions to achieve energy sustainability in IoT applications. AI is relevant through the integration of various Machine Learning (ML) and Swarm Intelligence (SI) techniques in the design of existing protocols. ML mechanisms used in the literature include variously supervised and unsupervised learning methods as well as reinforcement learning (RL) solutions. The survey constitutes a complete guideline for readers who wish to get acquainted with recent development and research advances in AI-based energy sustainability in IoT Networks. The survey also explores the different open issues and challenges." @default.
- W4311463321 created "2022-12-26" @default.
- W4311463321 creator A5028625868 @default.
- W4311463321 creator A5054183894 @default.
- W4311463321 creator A5057916222 @default.
- W4311463321 creator A5058266644 @default.
- W4311463321 creator A5066044844 @default.
- W4311463321 date "2023-03-01" @default.
- W4311463321 modified "2023-10-14" @default.
- W4311463321 title "Artificial intelligence implication on energy sustainability in Internet of Things: A survey" @default.
- W4311463321 cites W1526373655 @default.
- W4311463321 cites W1985768685 @default.
- W4311463321 cites W2312668963 @default.
- W4311463321 cites W2551195109 @default.
- W4311463321 cites W2582380851 @default.
- W4311463321 cites W2604808495 @default.
- W4311463321 cites W2613467441 @default.
- W4311463321 cites W2745992310 @default.
- W4311463321 cites W2755117075 @default.
- W4311463321 cites W2756881949 @default.
- W4311463321 cites W2758890981 @default.
- W4311463321 cites W2761694337 @default.
- W4311463321 cites W2778321139 @default.
- W4311463321 cites W2789526093 @default.
- W4311463321 cites W2789530668 @default.
- W4311463321 cites W2789896367 @default.
- W4311463321 cites W2795765720 @default.
- W4311463321 cites W2803902843 @default.
- W4311463321 cites W2807731816 @default.
- W4311463321 cites W2807900833 @default.
- W4311463321 cites W2885796109 @default.
- W4311463321 cites W2888086547 @default.
- W4311463321 cites W2889673960 @default.
- W4311463321 cites W2893434546 @default.
- W4311463321 cites W2894891666 @default.
- W4311463321 cites W2895216609 @default.
- W4311463321 cites W2897198596 @default.
- W4311463321 cites W2897514040 @default.
- W4311463321 cites W2898035736 @default.
- W4311463321 cites W2898652425 @default.
- W4311463321 cites W2900617671 @default.
- W4311463321 cites W2900703377 @default.
- W4311463321 cites W2904351506 @default.
- W4311463321 cites W2905243440 @default.
- W4311463321 cites W2905372629 @default.
- W4311463321 cites W2911232490 @default.
- W4311463321 cites W2912529044 @default.
- W4311463321 cites W2912731102 @default.
- W4311463321 cites W2913263959 @default.
- W4311463321 cites W2918400102 @default.
- W4311463321 cites W2924948991 @default.
- W4311463321 cites W2933658608 @default.
- W4311463321 cites W2941971445 @default.
- W4311463321 cites W2943621039 @default.
- W4311463321 cites W2948356724 @default.
- W4311463321 cites W2951054802 @default.
- W4311463321 cites W2951290845 @default.
- W4311463321 cites W2954418827 @default.
- W4311463321 cites W2955338161 @default.
- W4311463321 cites W2962804345 @default.
- W4311463321 cites W2962848237 @default.
- W4311463321 cites W2963083073 @default.
- W4311463321 cites W2963246369 @default.
- W4311463321 cites W2964008445 @default.
- W4311463321 cites W2964098968 @default.
- W4311463321 cites W2968424451 @default.
- W4311463321 cites W2968450700 @default.
- W4311463321 cites W2969519626 @default.
- W4311463321 cites W2971847049 @default.
- W4311463321 cites W2972047422 @default.
- W4311463321 cites W2976490838 @default.
- W4311463321 cites W2981138228 @default.
- W4311463321 cites W2986907531 @default.
- W4311463321 cites W2987315617 @default.
- W4311463321 cites W2996745384 @default.
- W4311463321 cites W2998890193 @default.
- W4311463321 cites W2998970577 @default.
- W4311463321 cites W2999472659 @default.
- W4311463321 cites W2999561085 @default.
- W4311463321 cites W3000688900 @default.
- W4311463321 cites W3004784593 @default.
- W4311463321 cites W3006191871 @default.
- W4311463321 cites W3006499227 @default.
- W4311463321 cites W3006696868 @default.
- W4311463321 cites W3011413082 @default.
- W4311463321 cites W3017042178 @default.
- W4311463321 cites W3017275226 @default.
- W4311463321 cites W3019022544 @default.
- W4311463321 cites W3023038016 @default.
- W4311463321 cites W3026127427 @default.
- W4311463321 cites W3026290994 @default.
- W4311463321 cites W3026449395 @default.
- W4311463321 cites W3031958474 @default.
- W4311463321 cites W3035007032 @default.
- W4311463321 cites W3035330356 @default.
- W4311463321 cites W3036667321 @default.
- W4311463321 cites W3041828314 @default.
- W4311463321 cites W3042857242 @default.