Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311473225> ?p ?o ?g. }
- W4311473225 endingPage "e2246637" @default.
- W4311473225 startingPage "e2246637" @default.
- W4311473225 abstract "Importance Massive transfusion is essential to prevent complications during uncontrolled intraoperative hemorrhage. As massive transfusion requires time for blood product preparation and additional medical personnel for a team-based approach, early prediction of massive transfusion is crucial for appropriate management. Objective To evaluate a real-time prediction model for massive transfusion during surgery based on the incorporation of preoperative data and intraoperative hemodynamic monitoring data. Design, Setting, and Participants This prognostic study used data sets from patients who underwent surgery with invasive blood pressure monitoring at Seoul National University Hospital (SNUH) from 2016 to 2019 and Boramae Medical Center (BMC) from 2020 to 2021. SNUH represented the development and internal validation data sets (n = 17 986 patients), and BMC represented the external validation data sets (n = 494 patients). Data were analyzed from November 2020 to December 2021. Exposures A deep learning–based real-time prediction model for massive transfusion. Main Outcomes and Measures Massive transfusion was defined as a transfusion of 3 or more units of red blood cells over an hour. A preoperative prediction model for massive transfusion was developed using preoperative variables. Subsequently, a real-time prediction model using preoperative and intraoperative parameters was constructed to predict massive transfusion 10 minutes in advance. A prediction model, the massive transfusion index, calculated the risk of massive transfusion in real time. Results Among 17 986 patients at SNUH (mean [SD] age, 58.65 [14.81] years; 9036 [50.2%] female), 416 patients (2.3%) underwent massive transfusion during the operation (mean [SD] duration of operation, 170.99 [105.03] minutes). The real-time prediction model constructed with the use of preoperative and intraoperative parameters significantly outperformed the preoperative prediction model (area under the receiver characteristic curve [AUROC], 0.972; 95% CI, 0.968-0.976 vs AUROC, 0.824; 95% CI, 0.813-0.834 in the SNUH internal validation data set; P &lt; .001). Patients with the highest massive transfusion index (ie, &gt;90th percentile) had a 47.5-fold increased risk for a massive transfusion compared with those with a lower massive transfusion index (ie, &lt;80th percentile). The real-time prediction model also showed excellent performance in the external validation data set (AUROC of 0.943 [95% CI, 0.919-0.961] in BMC). Conclusions and Relevance The findings of this prognostic study suggest that the real-time prediction model for massive transfusion showed high accuracy of prediction performance, enabling early intervention for high-risk patients. It suggests strong confidence in artificial intelligence-assisted clinical decision support systems in the operating field." @default.
- W4311473225 created "2022-12-26" @default.
- W4311473225 creator A5003317644 @default.
- W4311473225 creator A5015785293 @default.
- W4311473225 creator A5015833520 @default.
- W4311473225 creator A5020921372 @default.
- W4311473225 creator A5021269581 @default.
- W4311473225 creator A5021734388 @default.
- W4311473225 creator A5046989134 @default.
- W4311473225 creator A5066138539 @default.
- W4311473225 creator A5070238515 @default.
- W4311473225 creator A5074131210 @default.
- W4311473225 creator A5078473635 @default.
- W4311473225 date "2022-12-14" @default.
- W4311473225 modified "2023-10-01" @default.
- W4311473225 title "Development and Validation of a Prediction Model for Need for Massive Transfusion During Surgery Using Intraoperative Hemodynamic Monitoring Data" @default.
- W4311473225 cites W1678356000 @default.
- W4311473225 cites W1981714421 @default.
- W4311473225 cites W1994682257 @default.
- W4311473225 cites W2015001967 @default.
- W4311473225 cites W2018261169 @default.
- W4311473225 cites W2039069227 @default.
- W4311473225 cites W2150780222 @default.
- W4311473225 cites W2157331557 @default.
- W4311473225 cites W2277786047 @default.
- W4311473225 cites W2323257552 @default.
- W4311473225 cites W2331792724 @default.
- W4311473225 cites W2396881363 @default.
- W4311473225 cites W2518582440 @default.
- W4311473225 cites W2609768702 @default.
- W4311473225 cites W2611724732 @default.
- W4311473225 cites W2617110182 @default.
- W4311473225 cites W2727650337 @default.
- W4311473225 cites W2755603902 @default.
- W4311473225 cites W2757504960 @default.
- W4311473225 cites W2759933999 @default.
- W4311473225 cites W2803844903 @default.
- W4311473225 cites W2846419763 @default.
- W4311473225 cites W2890848909 @default.
- W4311473225 cites W2891400669 @default.
- W4311473225 cites W2892592994 @default.
- W4311473225 cites W2911239553 @default.
- W4311473225 cites W2911964244 @default.
- W4311473225 cites W2914209001 @default.
- W4311473225 cites W2941079521 @default.
- W4311473225 cites W2966235521 @default.
- W4311473225 cites W3009583110 @default.
- W4311473225 cites W3013833086 @default.
- W4311473225 cites W3031176687 @default.
- W4311473225 cites W3084745688 @default.
- W4311473225 cites W3085869659 @default.
- W4311473225 cites W3095170161 @default.
- W4311473225 cites W3123160633 @default.
- W4311473225 cites W3126214037 @default.
- W4311473225 cites W3127861532 @default.
- W4311473225 cites W3131505924 @default.
- W4311473225 cites W3138683431 @default.
- W4311473225 cites W3156402977 @default.
- W4311473225 cites W3179837106 @default.
- W4311473225 cites W3195505129 @default.
- W4311473225 cites W3203164674 @default.
- W4311473225 cites W4234698323 @default.
- W4311473225 cites W4242751317 @default.
- W4311473225 cites W4244294092 @default.
- W4311473225 cites W4245953496 @default.
- W4311473225 cites W4246717490 @default.
- W4311473225 cites W4253614971 @default.
- W4311473225 doi "https://doi.org/10.1001/jamanetworkopen.2022.46637" @default.
- W4311473225 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36515949" @default.
- W4311473225 hasPublicationYear "2022" @default.
- W4311473225 type Work @default.
- W4311473225 citedByCount "5" @default.
- W4311473225 countsByYear W43114732252022 @default.
- W4311473225 countsByYear W43114732252023 @default.
- W4311473225 crossrefType "journal-article" @default.
- W4311473225 hasAuthorship W4311473225A5003317644 @default.
- W4311473225 hasAuthorship W4311473225A5015785293 @default.
- W4311473225 hasAuthorship W4311473225A5015833520 @default.
- W4311473225 hasAuthorship W4311473225A5020921372 @default.
- W4311473225 hasAuthorship W4311473225A5021269581 @default.
- W4311473225 hasAuthorship W4311473225A5021734388 @default.
- W4311473225 hasAuthorship W4311473225A5046989134 @default.
- W4311473225 hasAuthorship W4311473225A5066138539 @default.
- W4311473225 hasAuthorship W4311473225A5070238515 @default.
- W4311473225 hasAuthorship W4311473225A5074131210 @default.
- W4311473225 hasAuthorship W4311473225A5078473635 @default.
- W4311473225 hasBestOaLocation W43114732251 @default.
- W4311473225 hasConcept C141071460 @default.
- W4311473225 hasConcept C178853913 @default.
- W4311473225 hasConcept C194828623 @default.
- W4311473225 hasConcept C2777396833 @default.
- W4311473225 hasConcept C2780014101 @default.
- W4311473225 hasConcept C3018822202 @default.
- W4311473225 hasConcept C41008148 @default.
- W4311473225 hasConcept C42219234 @default.
- W4311473225 hasConcept C71924100 @default.
- W4311473225 hasConcept C77088390 @default.
- W4311473225 hasConceptScore W4311473225C141071460 @default.