Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311477072> ?p ?o ?g. }
- W4311477072 abstract "Abstract Second‐harmonic generation (SHG) is a nonlinear optical method allowing the study of the local structure, symmetry, and ferroic order in noncentrosymmetric materials such as ferroelectrics. The combination of SHG microscopy with local polarization analysis is particularly efficient for deriving the local polarization orientation. This, however, entails the use of tedious and time‐consuming modeling methods of nonlinear optical emission. Moreover, extracting the complex domain structures often observed in thin films requires a pixel‐by‐pixel analysis and the fitting of numerous polar plots to ascribe a polarization angle to each pixel. Here, the domain structure of GeTe films is studied using SHG polarimetry assisted by machine learning. The method is applied to two film thicknesses: A thick film containing large domains visible in SHG images, and a thin film in which the domains' size is below the SHG resolution limit. Machine learning‐assisted methods show that both samples exhibit four domain variants of the same type. This result is confirmed in the case of the thick film, both by the manual pixel‐by‐pixel analysis and by using piezoresponse force microscopy. The proposed approach foreshows new prospects for optical studies by enabling enhanced sensitivity and high throughput analysis." @default.
- W4311477072 created "2022-12-26" @default.
- W4311477072 creator A5007864490 @default.
- W4311477072 creator A5021666527 @default.
- W4311477072 creator A5024827493 @default.
- W4311477072 creator A5034797294 @default.
- W4311477072 creator A5040244793 @default.
- W4311477072 creator A5049651551 @default.
- W4311477072 creator A5049703946 @default.
- W4311477072 creator A5054345119 @default.
- W4311477072 creator A5060484108 @default.
- W4311477072 creator A5062051890 @default.
- W4311477072 creator A5071383684 @default.
- W4311477072 creator A5081823706 @default.
- W4311477072 date "2022-12-14" @default.
- W4311477072 modified "2023-10-14" @default.
- W4311477072 title "Automatic Ferroelectric Domain Pattern Recognition Based on the Analysis of Localized Nonlinear Optical Responses Assisted by Machine Learning" @default.
- W4311477072 cites W1485136954 @default.
- W4311477072 cites W1625621679 @default.
- W4311477072 cites W1649112265 @default.
- W4311477072 cites W1776759432 @default.
- W4311477072 cites W1951634347 @default.
- W4311477072 cites W1967559392 @default.
- W4311477072 cites W1985614145 @default.
- W4311477072 cites W1989192161 @default.
- W4311477072 cites W1991321243 @default.
- W4311477072 cites W1997080552 @default.
- W4311477072 cites W2034801431 @default.
- W4311477072 cites W2049530054 @default.
- W4311477072 cites W2070488177 @default.
- W4311477072 cites W2073597861 @default.
- W4311477072 cites W2095000419 @default.
- W4311477072 cites W2109955065 @default.
- W4311477072 cites W2127639112 @default.
- W4311477072 cites W2253572685 @default.
- W4311477072 cites W2515112055 @default.
- W4311477072 cites W2622733602 @default.
- W4311477072 cites W2794653131 @default.
- W4311477072 cites W2900290671 @default.
- W4311477072 cites W2937092103 @default.
- W4311477072 cites W2963899413 @default.
- W4311477072 cites W2999277653 @default.
- W4311477072 cites W3017015048 @default.
- W4311477072 cites W3035116387 @default.
- W4311477072 cites W3047618524 @default.
- W4311477072 cites W3049044731 @default.
- W4311477072 cites W3093341607 @default.
- W4311477072 cites W3093749623 @default.
- W4311477072 cites W3106377237 @default.
- W4311477072 cites W3119821101 @default.
- W4311477072 cites W3132609193 @default.
- W4311477072 cites W3200807207 @default.
- W4311477072 cites W3201827408 @default.
- W4311477072 cites W3206697852 @default.
- W4311477072 cites W3212566665 @default.
- W4311477072 cites W4200397550 @default.
- W4311477072 cites W4206504407 @default.
- W4311477072 cites W4210661534 @default.
- W4311477072 cites W4210930321 @default.
- W4311477072 cites W4225271679 @default.
- W4311477072 cites W4283072525 @default.
- W4311477072 cites W4283451325 @default.
- W4311477072 cites W4284894501 @default.
- W4311477072 cites W4307683630 @default.
- W4311477072 doi "https://doi.org/10.1002/apxr.202200037" @default.
- W4311477072 hasPublicationYear "2022" @default.
- W4311477072 type Work @default.
- W4311477072 citedByCount "0" @default.
- W4311477072 crossrefType "journal-article" @default.
- W4311477072 hasAuthorship W4311477072A5007864490 @default.
- W4311477072 hasAuthorship W4311477072A5021666527 @default.
- W4311477072 hasAuthorship W4311477072A5024827493 @default.
- W4311477072 hasAuthorship W4311477072A5034797294 @default.
- W4311477072 hasAuthorship W4311477072A5040244793 @default.
- W4311477072 hasAuthorship W4311477072A5049651551 @default.
- W4311477072 hasAuthorship W4311477072A5049703946 @default.
- W4311477072 hasAuthorship W4311477072A5054345119 @default.
- W4311477072 hasAuthorship W4311477072A5060484108 @default.
- W4311477072 hasAuthorship W4311477072A5062051890 @default.
- W4311477072 hasAuthorship W4311477072A5071383684 @default.
- W4311477072 hasAuthorship W4311477072A5081823706 @default.
- W4311477072 hasBestOaLocation W43114770721 @default.
- W4311477072 hasConcept C120665830 @default.
- W4311477072 hasConcept C121332964 @default.
- W4311477072 hasConcept C133386390 @default.
- W4311477072 hasConcept C147080431 @default.
- W4311477072 hasConcept C147789679 @default.
- W4311477072 hasConcept C158622935 @default.
- W4311477072 hasConcept C160633673 @default.
- W4311477072 hasConcept C172436747 @default.
- W4311477072 hasConcept C185592680 @default.
- W4311477072 hasConcept C191486275 @default.
- W4311477072 hasConcept C192562407 @default.
- W4311477072 hasConcept C205049153 @default.
- W4311477072 hasConcept C28493345 @default.
- W4311477072 hasConcept C30713254 @default.
- W4311477072 hasConcept C49040817 @default.
- W4311477072 hasConcept C520434653 @default.
- W4311477072 hasConcept C62520636 @default.
- W4311477072 hasConcept C79090758 @default.