Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311481010> ?p ?o ?g. }
- W4311481010 abstract "To compare a deep learning model with a radiomics model in differentiating high-grade (LR-3, LR-4, LR-5) liver imaging reporting and data system (LI-RADS) liver tumors from low-grade (LR-1, LR-2) LI-RADS tumors based on the contrast-enhanced magnetic resonance images.Magnetic resonance imaging scans of 361 suspected hepatocellular carcinoma patients were retrospectively reviewed. Lesion volume segmentation was manually performed by two radiologists, resulting in 426 lesions from the training set and 83 lesions from the test set. The radiomics model was constructed using a support vector machine (SVM) with pre-defined features, which was first selected using Chi-square test, followed by refining using binary least absolute shrinkage and selection operator (LASSO) regression. The deep learning model was established based on the DenseNet. Performance of the models was quantified by area under the receiver-operating characteristic curve (AUC), accuracy, sensitivity, specificity and F1-score.A set of 8 most informative features was selected from 1049 features to train the SVM classifier. The AUCs of the radiomics model were 0.857 (95% confidence interval [CI] 0.816-0.888) for the training set and 0.879 (95% CI 0.779-0.935) for the test set. The deep learning method achieved AUCs of 0.838 (95% CI 0.799-0.871) for the training set and 0.717 (95% CI 0.601-0.814) for the test set. The performance difference between these two models was assessed by t-test, which showed the results in both training and test sets were statistically significant.The deep learning based model can be trained end-to-end with little extra domain knowledge, while the radiomics model requires complex feature selection. However, this process makes the radiomics model achieve better performance in this study with smaller computational cost and more potential on model interpretability." @default.
- W4311481010 created "2022-12-26" @default.
- W4311481010 creator A5013637462 @default.
- W4311481010 creator A5029115319 @default.
- W4311481010 creator A5043824632 @default.
- W4311481010 creator A5044249258 @default.
- W4311481010 creator A5045031529 @default.
- W4311481010 creator A5046078938 @default.
- W4311481010 creator A5069612314 @default.
- W4311481010 date "2022-12-14" @default.
- W4311481010 modified "2023-10-16" @default.
- W4311481010 title "A comparative study between deep learning and radiomics models in grading liver tumors using hepatobiliary phase contrast-enhanced MR images" @default.
- W4311481010 cites W1979185563 @default.
- W4311481010 cites W1990967415 @default.
- W4311481010 cites W2038201226 @default.
- W4311481010 cites W2097436994 @default.
- W4311481010 cites W2100645706 @default.
- W4311481010 cites W2133107592 @default.
- W4311481010 cites W2136922672 @default.
- W4311481010 cites W2140392267 @default.
- W4311481010 cites W2148347694 @default.
- W4311481010 cites W2163403599 @default.
- W4311481010 cites W2174661749 @default.
- W4311481010 cites W2528491735 @default.
- W4311481010 cites W2530382561 @default.
- W4311481010 cites W2546596772 @default.
- W4311481010 cites W2588978745 @default.
- W4311481010 cites W2650249087 @default.
- W4311481010 cites W2786204509 @default.
- W4311481010 cites W2811374795 @default.
- W4311481010 cites W2892235178 @default.
- W4311481010 cites W2893608205 @default.
- W4311481010 cites W2912031002 @default.
- W4311481010 cites W2963214037 @default.
- W4311481010 cites W2963446712 @default.
- W4311481010 cites W2973179191 @default.
- W4311481010 cites W2993640809 @default.
- W4311481010 cites W3000294763 @default.
- W4311481010 cites W3017314890 @default.
- W4311481010 cites W3038885939 @default.
- W4311481010 cites W3045014501 @default.
- W4311481010 cites W3047272901 @default.
- W4311481010 cites W3102028276 @default.
- W4311481010 cites W3105282616 @default.
- W4311481010 cites W3119494456 @default.
- W4311481010 cites W3128646645 @default.
- W4311481010 cites W3153672206 @default.
- W4311481010 cites W3167687694 @default.
- W4311481010 cites W3210024870 @default.
- W4311481010 cites W4200454753 @default.
- W4311481010 cites W4210839760 @default.
- W4311481010 cites W4220709844 @default.
- W4311481010 cites W4220764303 @default.
- W4311481010 cites W4223582249 @default.
- W4311481010 cites W4223928962 @default.
- W4311481010 cites W4229332518 @default.
- W4311481010 doi "https://doi.org/10.1186/s12880-022-00946-8" @default.
- W4311481010 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36517762" @default.
- W4311481010 hasPublicationYear "2022" @default.
- W4311481010 type Work @default.
- W4311481010 citedByCount "1" @default.
- W4311481010 countsByYear W43114810102023 @default.
- W4311481010 crossrefType "journal-article" @default.
- W4311481010 hasAuthorship W4311481010A5013637462 @default.
- W4311481010 hasAuthorship W4311481010A5029115319 @default.
- W4311481010 hasAuthorship W4311481010A5043824632 @default.
- W4311481010 hasAuthorship W4311481010A5044249258 @default.
- W4311481010 hasAuthorship W4311481010A5045031529 @default.
- W4311481010 hasAuthorship W4311481010A5046078938 @default.
- W4311481010 hasAuthorship W4311481010A5069612314 @default.
- W4311481010 hasBestOaLocation W43114810101 @default.
- W4311481010 hasConcept C108583219 @default.
- W4311481010 hasConcept C119857082 @default.
- W4311481010 hasConcept C12267149 @default.
- W4311481010 hasConcept C126838900 @default.
- W4311481010 hasConcept C127413603 @default.
- W4311481010 hasConcept C143409427 @default.
- W4311481010 hasConcept C147176958 @default.
- W4311481010 hasConcept C153180895 @default.
- W4311481010 hasConcept C154945302 @default.
- W4311481010 hasConcept C169903167 @default.
- W4311481010 hasConcept C2777286243 @default.
- W4311481010 hasConcept C2989005 @default.
- W4311481010 hasConcept C41008148 @default.
- W4311481010 hasConcept C58471807 @default.
- W4311481010 hasConcept C58489278 @default.
- W4311481010 hasConcept C71924100 @default.
- W4311481010 hasConceptScore W4311481010C108583219 @default.
- W4311481010 hasConceptScore W4311481010C119857082 @default.
- W4311481010 hasConceptScore W4311481010C12267149 @default.
- W4311481010 hasConceptScore W4311481010C126838900 @default.
- W4311481010 hasConceptScore W4311481010C127413603 @default.
- W4311481010 hasConceptScore W4311481010C143409427 @default.
- W4311481010 hasConceptScore W4311481010C147176958 @default.
- W4311481010 hasConceptScore W4311481010C153180895 @default.
- W4311481010 hasConceptScore W4311481010C154945302 @default.
- W4311481010 hasConceptScore W4311481010C169903167 @default.
- W4311481010 hasConceptScore W4311481010C2777286243 @default.
- W4311481010 hasConceptScore W4311481010C2989005 @default.
- W4311481010 hasConceptScore W4311481010C41008148 @default.