Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311484994> ?p ?o ?g. }
- W4311484994 endingPage "101867" @default.
- W4311484994 startingPage "101867" @default.
- W4311484994 abstract "Stock index futures allows stock investors to manage different kinds of risk. This paper combines the AdaBoost feature selection and deep learning model for predicting stock index futures prices. In particular, a hybrid model is proposed in which the sklearn wrapped AdaBoost regressor is used for feature selection and the two-layer long short-term memory-based predictor is constructed. Performance metrics consistently show that the proposed model outperforms other popular prediction models such as random forest, multi-layer perception, gated recurrent unit, deep belief network and stacked denoising autoencoder." @default.
- W4311484994 created "2022-12-26" @default.
- W4311484994 creator A5053663262 @default.
- W4311484994 date "2023-01-01" @default.
- W4311484994 modified "2023-10-09" @default.
- W4311484994 title "Stock index futures price prediction using feature selection and deep learning" @default.
- W4311484994 cites W1981780459 @default.
- W4311484994 cites W1988790447 @default.
- W4311484994 cites W1990497493 @default.
- W4311484994 cites W2017333734 @default.
- W4311484994 cites W2064675550 @default.
- W4311484994 cites W2102831150 @default.
- W4311484994 cites W2109080673 @default.
- W4311484994 cites W2136922672 @default.
- W4311484994 cites W2214846245 @default.
- W4311484994 cites W2513171930 @default.
- W4311484994 cites W2528057857 @default.
- W4311484994 cites W2611743072 @default.
- W4311484994 cites W2624385633 @default.
- W4311484994 cites W2759669842 @default.
- W4311484994 cites W2789758093 @default.
- W4311484994 cites W2794754466 @default.
- W4311484994 cites W2809317444 @default.
- W4311484994 cites W2810606560 @default.
- W4311484994 cites W2845688424 @default.
- W4311484994 cites W2897244933 @default.
- W4311484994 cites W2899346540 @default.
- W4311484994 cites W2899518379 @default.
- W4311484994 cites W2900449510 @default.
- W4311484994 cites W2921029278 @default.
- W4311484994 cites W2939557343 @default.
- W4311484994 cites W2969366989 @default.
- W4311484994 cites W2980874176 @default.
- W4311484994 cites W2982470519 @default.
- W4311484994 cites W3008235510 @default.
- W4311484994 cites W3011436173 @default.
- W4311484994 cites W3043107999 @default.
- W4311484994 cites W3087353363 @default.
- W4311484994 cites W3092453270 @default.
- W4311484994 cites W3094392984 @default.
- W4311484994 cites W3103064492 @default.
- W4311484994 cites W3112106267 @default.
- W4311484994 cites W3125654725 @default.
- W4311484994 cites W3134220184 @default.
- W4311484994 cites W3162977831 @default.
- W4311484994 cites W3189302811 @default.
- W4311484994 cites W3202315245 @default.
- W4311484994 cites W3208882656 @default.
- W4311484994 cites W3211281790 @default.
- W4311484994 cites W4221086861 @default.
- W4311484994 cites W4281703464 @default.
- W4311484994 doi "https://doi.org/10.1016/j.najef.2022.101867" @default.
- W4311484994 hasPublicationYear "2023" @default.
- W4311484994 type Work @default.
- W4311484994 citedByCount "7" @default.
- W4311484994 countsByYear W43114849942023 @default.
- W4311484994 crossrefType "journal-article" @default.
- W4311484994 hasAuthorship W4311484994A5053663262 @default.
- W4311484994 hasConcept C10138342 @default.
- W4311484994 hasConcept C101738243 @default.
- W4311484994 hasConcept C106306483 @default.
- W4311484994 hasConcept C108583219 @default.
- W4311484994 hasConcept C119857082 @default.
- W4311484994 hasConcept C127413603 @default.
- W4311484994 hasConcept C136764020 @default.
- W4311484994 hasConcept C141404830 @default.
- W4311484994 hasConcept C148483581 @default.
- W4311484994 hasConcept C149782125 @default.
- W4311484994 hasConcept C151730666 @default.
- W4311484994 hasConcept C153180895 @default.
- W4311484994 hasConcept C154945302 @default.
- W4311484994 hasConcept C162324750 @default.
- W4311484994 hasConcept C169258074 @default.
- W4311484994 hasConcept C204036174 @default.
- W4311484994 hasConcept C2777382242 @default.
- W4311484994 hasConcept C2780299701 @default.
- W4311484994 hasConcept C2780762169 @default.
- W4311484994 hasConcept C2993390347 @default.
- W4311484994 hasConcept C41008148 @default.
- W4311484994 hasConcept C78519656 @default.
- W4311484994 hasConcept C86803240 @default.
- W4311484994 hasConcept C88389905 @default.
- W4311484994 hasConcept C95623464 @default.
- W4311484994 hasConceptScore W4311484994C10138342 @default.
- W4311484994 hasConceptScore W4311484994C101738243 @default.
- W4311484994 hasConceptScore W4311484994C106306483 @default.
- W4311484994 hasConceptScore W4311484994C108583219 @default.
- W4311484994 hasConceptScore W4311484994C119857082 @default.
- W4311484994 hasConceptScore W4311484994C127413603 @default.
- W4311484994 hasConceptScore W4311484994C136764020 @default.
- W4311484994 hasConceptScore W4311484994C141404830 @default.
- W4311484994 hasConceptScore W4311484994C148483581 @default.
- W4311484994 hasConceptScore W4311484994C149782125 @default.
- W4311484994 hasConceptScore W4311484994C151730666 @default.
- W4311484994 hasConceptScore W4311484994C153180895 @default.
- W4311484994 hasConceptScore W4311484994C154945302 @default.
- W4311484994 hasConceptScore W4311484994C162324750 @default.
- W4311484994 hasConceptScore W4311484994C169258074 @default.