Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311486342> ?p ?o ?g. }
- W4311486342 endingPage "e0266435" @default.
- W4311486342 startingPage "e0266435" @default.
- W4311486342 abstract "We apply a heterogeneous graph convolution network (GCN) combined with a multi-layer perceptron (MLP) denoted by GCNMLP to explore the potential side effects of drugs. Here the SIDER, OFFSIDERS, and FAERS are used as the datasets. We integrate the drug information with similar characteristics from the datasets of known drugs and side effect networks. The heterogeneous graph networks explore the potential side effects of drugs by inferring the relationship between similar drugs and related side effects. This novel in silico method will shorten the time spent in uncovering the unseen side effects within routine drug prescriptions while highlighting the relevance of exploring drug mechanisms from well-documented drugs. In our experiments, we inquire about the drugs Vancomycin, Amlodipine, Cisplatin, and Glimepiride from a trained model, where the parameters are acquired from the dataset SIDER after training. Our results show that the performance of the GCNMLP on these three datasets is superior to the non-negative matrix factorization method (NMF) and some well-known machine learning methods with respect to various evaluation scales. Moreover, new side effects of drugs can be obtained using the GCNMLP." @default.
- W4311486342 created "2022-12-26" @default.
- W4311486342 creator A5033034251 @default.
- W4311486342 creator A5059149137 @default.
- W4311486342 creator A5071576624 @default.
- W4311486342 creator A5073894907 @default.
- W4311486342 date "2022-12-14" @default.
- W4311486342 modified "2023-10-14" @default.
- W4311486342 title "Predicting adverse drug effects: A heterogeneous graph convolution network with a multi-layer perceptron approach" @default.
- W4311486342 cites W1161601223 @default.
- W4311486342 cites W144873874 @default.
- W4311486342 cites W1846534543 @default.
- W4311486342 cites W1972645057 @default.
- W4311486342 cites W2007444087 @default.
- W4311486342 cites W2009313526 @default.
- W4311486342 cites W2022714214 @default.
- W4311486342 cites W2026417691 @default.
- W4311486342 cites W2035459829 @default.
- W4311486342 cites W2038591682 @default.
- W4311486342 cites W2044542784 @default.
- W4311486342 cites W2047708582 @default.
- W4311486342 cites W2048435239 @default.
- W4311486342 cites W2053887757 @default.
- W4311486342 cites W2069153192 @default.
- W4311486342 cites W2070741095 @default.
- W4311486342 cites W2077943220 @default.
- W4311486342 cites W2079364348 @default.
- W4311486342 cites W2102937240 @default.
- W4311486342 cites W2103972604 @default.
- W4311486342 cites W2111414637 @default.
- W4311486342 cites W2127553917 @default.
- W4311486342 cites W2137096596 @default.
- W4311486342 cites W2142572836 @default.
- W4311486342 cites W2145578524 @default.
- W4311486342 cites W2152454589 @default.
- W4311486342 cites W2152849720 @default.
- W4311486342 cites W2153972688 @default.
- W4311486342 cites W2154454189 @default.
- W4311486342 cites W2154896031 @default.
- W4311486342 cites W2167102682 @default.
- W4311486342 cites W2185365308 @default.
- W4311486342 cites W2187793890 @default.
- W4311486342 cites W2418828978 @default.
- W4311486342 cites W2553570933 @default.
- W4311486342 cites W2569335714 @default.
- W4311486342 cites W2589489260 @default.
- W4311486342 cites W2592099154 @default.
- W4311486342 cites W2617902735 @default.
- W4311486342 cites W2621221322 @default.
- W4311486342 cites W2746873727 @default.
- W4311486342 cites W2774163364 @default.
- W4311486342 cites W2786016794 @default.
- W4311486342 cites W2789789321 @default.
- W4311486342 cites W2897840125 @default.
- W4311486342 cites W2901775822 @default.
- W4311486342 cites W2906083215 @default.
- W4311486342 cites W2908695589 @default.
- W4311486342 cites W2914721378 @default.
- W4311486342 cites W2918064359 @default.
- W4311486342 cites W2945623882 @default.
- W4311486342 cites W2956769762 @default.
- W4311486342 cites W2962756421 @default.
- W4311486342 cites W2985331920 @default.
- W4311486342 cites W3048427561 @default.
- W4311486342 cites W3096561213 @default.
- W4311486342 cites W3152893301 @default.
- W4311486342 cites W3209577504 @default.
- W4311486342 doi "https://doi.org/10.1371/journal.pone.0266435" @default.
- W4311486342 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36516131" @default.
- W4311486342 hasPublicationYear "2022" @default.
- W4311486342 type Work @default.
- W4311486342 citedByCount "1" @default.
- W4311486342 crossrefType "journal-article" @default.
- W4311486342 hasAuthorship W4311486342A5033034251 @default.
- W4311486342 hasAuthorship W4311486342A5059149137 @default.
- W4311486342 hasAuthorship W4311486342A5071576624 @default.
- W4311486342 hasAuthorship W4311486342A5073894907 @default.
- W4311486342 hasBestOaLocation W43114863421 @default.
- W4311486342 hasConcept C119857082 @default.
- W4311486342 hasConcept C121332964 @default.
- W4311486342 hasConcept C132525143 @default.
- W4311486342 hasConcept C154945302 @default.
- W4311486342 hasConcept C158693339 @default.
- W4311486342 hasConcept C184898388 @default.
- W4311486342 hasConcept C2780035454 @default.
- W4311486342 hasConcept C41008148 @default.
- W4311486342 hasConcept C42355184 @default.
- W4311486342 hasConcept C62520636 @default.
- W4311486342 hasConcept C71924100 @default.
- W4311486342 hasConcept C80444323 @default.
- W4311486342 hasConcept C98274493 @default.
- W4311486342 hasConceptScore W4311486342C119857082 @default.
- W4311486342 hasConceptScore W4311486342C121332964 @default.
- W4311486342 hasConceptScore W4311486342C132525143 @default.
- W4311486342 hasConceptScore W4311486342C154945302 @default.
- W4311486342 hasConceptScore W4311486342C158693339 @default.
- W4311486342 hasConceptScore W4311486342C184898388 @default.
- W4311486342 hasConceptScore W4311486342C2780035454 @default.