Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311486560> ?p ?o ?g. }
- W4311486560 abstract "Abstract Background Structural variations (SVs) have recently become a topic of great interest in the area of genetic diversity and trait regulation. As genomic sequencing technologies have rapidly advanced, longer reads have been used to identify SVs at high resolution and with increased accuracy. It is important to choose a suitable sequencing platform and appropriate sequencing depth for SV detection in the pear genome. Results In this study, two types of long reads from sequencing platforms, continuous long reads from Pacific Biosciences (PB-CLR) and long reads from Oxford Nanopore Technologies (ONT), were used to comprehensively analyze and compare SVs in the pear genome. The mapping rate of long reads was higher when the program Minimap2 rather than the other three mapping tools (NGMLR, LRA and Winnowmap2) was used. Three SV detection programs (Sniffles_v2, CuteSV, and Nanovar) were compared, and Nanovar had the highest sensitivity in detecting SVs at low sequencing depth (10–15×). A sequencing depth of 15× was suitable for SV detection in the pear genome using Nanovar. SVs detected by Sniffles_v2 and CuteSV with ONT reads had the high overlap with presence/absence variations (PAVs) in the pear cultivars ‘Bartlett’ and ‘Dangshansuli’, both of them with 38% of insertions and 55% of deletions overlapping with PAVs at sequencing depth of 30×. For the ONT sequencing data, over 37,526 SVs spanning ~ 28 Mb were identified by all three software packages for the ‘Bartlett’ and ‘Dangshansuli’ genomes. Those SVs were annotated and combined with transcriptome profiles derived from ‘Bartlett’ and ‘Dangshansuli’ fruit flesh at 60 days after cross-pollination. Several genes related to levels of sugars, acid, stone cells, and aromatic compounds were identified among the SVs. Transcription factors were then predicted among those genes, and results included bHLH, ERF, and MYB genes. Conclusion SV detection is of great significance in exploring phenotypic differences between pear varieties. Our study provides a framework for assessment of different SV software packages and sequencing platforms that can be applied in other plant genome studies. Based on these analyses, ONT sequencing data was determined to be more suitable than PB-CLR for SV detection in the pear genome. This analysis model will facilitate screening of genes related to agronomic traits in other crops." @default.
- W4311486560 created "2022-12-26" @default.
- W4311486560 creator A5000142186 @default.
- W4311486560 creator A5016762458 @default.
- W4311486560 creator A5024457019 @default.
- W4311486560 creator A5031839897 @default.
- W4311486560 creator A5054567270 @default.
- W4311486560 creator A5063170943 @default.
- W4311486560 creator A5063971652 @default.
- W4311486560 creator A5068161208 @default.
- W4311486560 date "2022-12-14" @default.
- W4311486560 modified "2023-10-14" @default.
- W4311486560 title "Comparison of structural variants detected by PacBio-CLR and ONT sequencing in pear" @default.
- W4311486560 cites W1969370236 @default.
- W4311486560 cites W1973067702 @default.
- W4311486560 cites W1989836163 @default.
- W4311486560 cites W2001709424 @default.
- W4311486560 cites W2011993186 @default.
- W4311486560 cites W2055770801 @default.
- W4311486560 cites W2100362302 @default.
- W4311486560 cites W2102278945 @default.
- W4311486560 cites W2103017472 @default.
- W4311486560 cites W2108234281 @default.
- W4311486560 cites W2113474040 @default.
- W4311486560 cites W2116126626 @default.
- W4311486560 cites W2132341951 @default.
- W4311486560 cites W2141637710 @default.
- W4311486560 cites W2152239989 @default.
- W4311486560 cites W2159482845 @default.
- W4311486560 cites W2164154943 @default.
- W4311486560 cites W2166241520 @default.
- W4311486560 cites W2582800429 @default.
- W4311486560 cites W2789843538 @default.
- W4311486560 cites W2794893153 @default.
- W4311486560 cites W2800441838 @default.
- W4311486560 cites W2805369755 @default.
- W4311486560 cites W2901224877 @default.
- W4311486560 cites W2949062400 @default.
- W4311486560 cites W2950121474 @default.
- W4311486560 cites W2951149781 @default.
- W4311486560 cites W2951764279 @default.
- W4311486560 cites W2966334212 @default.
- W4311486560 cites W2972606315 @default.
- W4311486560 cites W2986448893 @default.
- W4311486560 cites W2990344913 @default.
- W4311486560 cites W2995536064 @default.
- W4311486560 cites W3011696475 @default.
- W4311486560 cites W3011895249 @default.
- W4311486560 cites W3014290661 @default.
- W4311486560 cites W3033870872 @default.
- W4311486560 cites W3045085255 @default.
- W4311486560 cites W3046401484 @default.
- W4311486560 cites W3164271582 @default.
- W4311486560 cites W3169325684 @default.
- W4311486560 cites W3177485564 @default.
- W4311486560 cites W3190088781 @default.
- W4311486560 cites W3214530144 @default.
- W4311486560 cites W4224441463 @default.
- W4311486560 cites W4225293672 @default.
- W4311486560 cites W4294216483 @default.
- W4311486560 doi "https://doi.org/10.1186/s12864-022-09074-7" @default.
- W4311486560 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36517766" @default.
- W4311486560 hasPublicationYear "2022" @default.
- W4311486560 type Work @default.
- W4311486560 citedByCount "2" @default.
- W4311486560 countsByYear W43114865602023 @default.
- W4311486560 crossrefType "journal-article" @default.
- W4311486560 hasAuthorship W4311486560A5000142186 @default.
- W4311486560 hasAuthorship W4311486560A5016762458 @default.
- W4311486560 hasAuthorship W4311486560A5024457019 @default.
- W4311486560 hasAuthorship W4311486560A5031839897 @default.
- W4311486560 hasAuthorship W4311486560A5054567270 @default.
- W4311486560 hasAuthorship W4311486560A5063170943 @default.
- W4311486560 hasAuthorship W4311486560A5063971652 @default.
- W4311486560 hasAuthorship W4311486560A5068161208 @default.
- W4311486560 hasBestOaLocation W43114865601 @default.
- W4311486560 hasConcept C104317684 @default.
- W4311486560 hasConcept C106337198 @default.
- W4311486560 hasConcept C126513998 @default.
- W4311486560 hasConcept C132917006 @default.
- W4311486560 hasConcept C141231307 @default.
- W4311486560 hasConcept C150194340 @default.
- W4311486560 hasConcept C162317418 @default.
- W4311486560 hasConcept C18949551 @default.
- W4311486560 hasConcept C192800701 @default.
- W4311486560 hasConcept C192953774 @default.
- W4311486560 hasConcept C24432333 @default.
- W4311486560 hasConcept C2775874295 @default.
- W4311486560 hasConcept C2779927696 @default.
- W4311486560 hasConcept C51679486 @default.
- W4311486560 hasConcept C54355233 @default.
- W4311486560 hasConcept C59822182 @default.
- W4311486560 hasConcept C70721500 @default.
- W4311486560 hasConcept C86803240 @default.
- W4311486560 hasConceptScore W4311486560C104317684 @default.
- W4311486560 hasConceptScore W4311486560C106337198 @default.
- W4311486560 hasConceptScore W4311486560C126513998 @default.
- W4311486560 hasConceptScore W4311486560C132917006 @default.
- W4311486560 hasConceptScore W4311486560C141231307 @default.
- W4311486560 hasConceptScore W4311486560C150194340 @default.