Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311494434> ?p ?o ?g. }
- W4311494434 endingPage "12787" @default.
- W4311494434 startingPage "12787" @default.
- W4311494434 abstract "Water quality deterioration is a serious problem with the increase in the urbanization rate. However, water quality monitoring uses grab sampling of physico-chemical parameters and a water quality index method to assess water quality. Both processes are lengthy and expensive. These traditional indices are biased towards the physico-chemical parameters because samples are only collected from certain sampling points. These limitations make the current water quality index method unsuitable for any water body in the world. Thus, we develop an enhanced water quality index method based on a semi-supervised machine learning technique to determine water quality. This method follows five steps: (i) parameter selection, (ii) sub-index calculation, (iii) weight assignment, (iv) aggregation of sub-indices and (v) classification. Physico-chemical, air, meteorological and hydrological, topographical parameters are acquired for the stream network of the Rawal watershed. Min-max normalization is used to obtain sub-indices, and weights are assigned with tree-based techniques, i.e., LightGBM, Random Forest, CatBoost, AdaBoost and XGBoost. As a result, the proposed technique removes the uncertainties in the traditional indexing with a 100% classification rate, removing the necessity of including all parameters for classification. Electric conductivity, secchi disk depth, dissolved oxygen, lithology and geology are amongst the high weighting parameters of using LightGBM and CatBoost with 99.1% and 99.3% accuracy, respectively. In fact, seasonal variations are observed for the classified stream network with a shift from 55:45% (January) to 10:90% (December) ratio for the medium to bad class. This verifies the validity of the proposed method that will contribute to water management planning globally." @default.
- W4311494434 created "2022-12-26" @default.
- W4311494434 creator A5029030974 @default.
- W4311494434 creator A5033269031 @default.
- W4311494434 creator A5057042065 @default.
- W4311494434 date "2022-12-13" @default.
- W4311494434 modified "2023-09-27" @default.
- W4311494434 title "An Enhanced Water Quality Index for Water Quality Monitoring Using Remote Sensing and Machine Learning" @default.
- W4311494434 cites W1537786255 @default.
- W4311494434 cites W1966548366 @default.
- W4311494434 cites W1985076527 @default.
- W4311494434 cites W1992507130 @default.
- W4311494434 cites W1993353636 @default.
- W4311494434 cites W2016097551 @default.
- W4311494434 cites W2021056147 @default.
- W4311494434 cites W2023858791 @default.
- W4311494434 cites W2028584426 @default.
- W4311494434 cites W2052466840 @default.
- W4311494434 cites W2054251450 @default.
- W4311494434 cites W2057212111 @default.
- W4311494434 cites W2061234965 @default.
- W4311494434 cites W2062602483 @default.
- W4311494434 cites W2079074402 @default.
- W4311494434 cites W2081198962 @default.
- W4311494434 cites W2087918989 @default.
- W4311494434 cites W2095076638 @default.
- W4311494434 cites W2110828928 @default.
- W4311494434 cites W2148426952 @default.
- W4311494434 cites W2173001546 @default.
- W4311494434 cites W2336586302 @default.
- W4311494434 cites W2523268912 @default.
- W4311494434 cites W2605745243 @default.
- W4311494434 cites W2751442030 @default.
- W4311494434 cites W2770226331 @default.
- W4311494434 cites W2889459612 @default.
- W4311494434 cites W2941297605 @default.
- W4311494434 cites W2995883393 @default.
- W4311494434 cites W3025949386 @default.
- W4311494434 cites W3036510350 @default.
- W4311494434 cites W3037326504 @default.
- W4311494434 cites W3147977884 @default.
- W4311494434 cites W3159503380 @default.
- W4311494434 cites W4205302599 @default.
- W4311494434 cites W615671193 @default.
- W4311494434 doi "https://doi.org/10.3390/app122412787" @default.
- W4311494434 hasPublicationYear "2022" @default.
- W4311494434 type Work @default.
- W4311494434 citedByCount "1" @default.
- W4311494434 countsByYear W43114944342023 @default.
- W4311494434 crossrefType "journal-article" @default.
- W4311494434 hasAuthorship W4311494434A5029030974 @default.
- W4311494434 hasAuthorship W4311494434A5033269031 @default.
- W4311494434 hasAuthorship W4311494434A5057042065 @default.
- W4311494434 hasBestOaLocation W43114944341 @default.
- W4311494434 hasConcept C105795698 @default.
- W4311494434 hasConcept C106131492 @default.
- W4311494434 hasConcept C119857082 @default.
- W4311494434 hasConcept C124101348 @default.
- W4311494434 hasConcept C126838900 @default.
- W4311494434 hasConcept C127413603 @default.
- W4311494434 hasConcept C136886441 @default.
- W4311494434 hasConcept C140779682 @default.
- W4311494434 hasConcept C144024400 @default.
- W4311494434 hasConcept C154945302 @default.
- W4311494434 hasConcept C169258074 @default.
- W4311494434 hasConcept C183115368 @default.
- W4311494434 hasConcept C187320778 @default.
- W4311494434 hasConcept C18903297 @default.
- W4311494434 hasConcept C19165224 @default.
- W4311494434 hasConcept C2780797713 @default.
- W4311494434 hasConcept C31972630 @default.
- W4311494434 hasConcept C33923547 @default.
- W4311494434 hasConcept C39432304 @default.
- W4311494434 hasConcept C41008148 @default.
- W4311494434 hasConcept C71924100 @default.
- W4311494434 hasConcept C76886044 @default.
- W4311494434 hasConcept C86803240 @default.
- W4311494434 hasConceptScore W4311494434C105795698 @default.
- W4311494434 hasConceptScore W4311494434C106131492 @default.
- W4311494434 hasConceptScore W4311494434C119857082 @default.
- W4311494434 hasConceptScore W4311494434C124101348 @default.
- W4311494434 hasConceptScore W4311494434C126838900 @default.
- W4311494434 hasConceptScore W4311494434C127413603 @default.
- W4311494434 hasConceptScore W4311494434C136886441 @default.
- W4311494434 hasConceptScore W4311494434C140779682 @default.
- W4311494434 hasConceptScore W4311494434C144024400 @default.
- W4311494434 hasConceptScore W4311494434C154945302 @default.
- W4311494434 hasConceptScore W4311494434C169258074 @default.
- W4311494434 hasConceptScore W4311494434C183115368 @default.
- W4311494434 hasConceptScore W4311494434C187320778 @default.
- W4311494434 hasConceptScore W4311494434C18903297 @default.
- W4311494434 hasConceptScore W4311494434C19165224 @default.
- W4311494434 hasConceptScore W4311494434C2780797713 @default.
- W4311494434 hasConceptScore W4311494434C31972630 @default.
- W4311494434 hasConceptScore W4311494434C33923547 @default.
- W4311494434 hasConceptScore W4311494434C39432304 @default.
- W4311494434 hasConceptScore W4311494434C41008148 @default.
- W4311494434 hasConceptScore W4311494434C71924100 @default.