Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311496177> ?p ?o ?g. }
- W4311496177 endingPage "112345" @default.
- W4311496177 startingPage "112345" @default.
- W4311496177 abstract "Capsule networks, which have achieved many achievements in machine vision, have also gotten wide attention in machinery fault diagnosis. However, due to the non-stationarity and diversity of mechanical system vibration signals, as well as the dual-scale characteristics of different fault features, it is often difficult for existing single-scale capsule networks to fully mine vital discriminative features in the data, which is not conducive to accurate identification of mechanical faults. This paper studies an attention-based dual-scale feature fusion capsule network for mechanical fault diagnosis. It first extracts dual-scale features from grayscale images obtained from vibration signals using convolutional layers composed of kernels of different sizes; secondly, an attention-based two-branch network is designed to calculate the weights of features at different scales, and accordingly dual-scale feature fusion is performed; finally, the obtained features are entered into the capsule layers, and the classification and identification of mechanical faults are realized by optimizing the model using the classification loss and reconstruction loss. A rolling bearing experimental dataset and a motor fault dataset are adopted to assess the performance of the proposed method, and the comparison results confirm its effectiveness and superiority, indicating that it has the potential to be a useful tool for detecting mechanical faults." @default.
- W4311496177 created "2022-12-26" @default.
- W4311496177 creator A5018945216 @default.
- W4311496177 creator A5024385262 @default.
- W4311496177 creator A5037906805 @default.
- W4311496177 creator A5040082411 @default.
- W4311496177 creator A5088449483 @default.
- W4311496177 date "2023-02-01" @default.
- W4311496177 modified "2023-09-30" @default.
- W4311496177 title "Mechanical fault intelligent diagnosis using attention-based dual-scale feature fusion capsule network" @default.
- W4311496177 cites W1819010325 @default.
- W4311496177 cites W2005523062 @default.
- W4311496177 cites W2063016254 @default.
- W4311496177 cites W2066980082 @default.
- W4311496177 cites W2467390032 @default.
- W4311496177 cites W2744604411 @default.
- W4311496177 cites W2757713103 @default.
- W4311496177 cites W2768753204 @default.
- W4311496177 cites W2784294927 @default.
- W4311496177 cites W2791694051 @default.
- W4311496177 cites W2792191775 @default.
- W4311496177 cites W2801396593 @default.
- W4311496177 cites W2803978172 @default.
- W4311496177 cites W2808496542 @default.
- W4311496177 cites W2819539323 @default.
- W4311496177 cites W2890838230 @default.
- W4311496177 cites W2893747136 @default.
- W4311496177 cites W2904460913 @default.
- W4311496177 cites W2925209208 @default.
- W4311496177 cites W2939535241 @default.
- W4311496177 cites W2966704097 @default.
- W4311496177 cites W2991661665 @default.
- W4311496177 cites W2995167577 @default.
- W4311496177 cites W2996752719 @default.
- W4311496177 cites W2998830408 @default.
- W4311496177 cites W3026881828 @default.
- W4311496177 cites W3034650994 @default.
- W4311496177 cites W3035900022 @default.
- W4311496177 cites W3037611653 @default.
- W4311496177 cites W3090982778 @default.
- W4311496177 cites W3097068663 @default.
- W4311496177 cites W3106650808 @default.
- W4311496177 cites W3131423289 @default.
- W4311496177 cites W3154691472 @default.
- W4311496177 cites W3197120949 @default.
- W4311496177 cites W3205765200 @default.
- W4311496177 cites W3209915120 @default.
- W4311496177 cites W3215193874 @default.
- W4311496177 doi "https://doi.org/10.1016/j.measurement.2022.112345" @default.
- W4311496177 hasPublicationYear "2023" @default.
- W4311496177 type Work @default.
- W4311496177 citedByCount "1" @default.
- W4311496177 countsByYear W43114961772023 @default.
- W4311496177 crossrefType "journal-article" @default.
- W4311496177 hasAuthorship W4311496177A5018945216 @default.
- W4311496177 hasAuthorship W4311496177A5024385262 @default.
- W4311496177 hasAuthorship W4311496177A5037906805 @default.
- W4311496177 hasAuthorship W4311496177A5040082411 @default.
- W4311496177 hasAuthorship W4311496177A5088449483 @default.
- W4311496177 hasConcept C116834253 @default.
- W4311496177 hasConcept C121332964 @default.
- W4311496177 hasConcept C124101348 @default.
- W4311496177 hasConcept C124952713 @default.
- W4311496177 hasConcept C127313418 @default.
- W4311496177 hasConcept C127413603 @default.
- W4311496177 hasConcept C138885662 @default.
- W4311496177 hasConcept C142362112 @default.
- W4311496177 hasConcept C153180895 @default.
- W4311496177 hasConcept C154945302 @default.
- W4311496177 hasConcept C165205528 @default.
- W4311496177 hasConcept C175551986 @default.
- W4311496177 hasConcept C198394728 @default.
- W4311496177 hasConcept C2776401178 @default.
- W4311496177 hasConcept C2778755073 @default.
- W4311496177 hasConcept C2780980858 @default.
- W4311496177 hasConcept C41008148 @default.
- W4311496177 hasConcept C41895202 @default.
- W4311496177 hasConcept C52622490 @default.
- W4311496177 hasConcept C59822182 @default.
- W4311496177 hasConcept C62520636 @default.
- W4311496177 hasConcept C86803240 @default.
- W4311496177 hasConcept C97931131 @default.
- W4311496177 hasConceptScore W4311496177C116834253 @default.
- W4311496177 hasConceptScore W4311496177C121332964 @default.
- W4311496177 hasConceptScore W4311496177C124101348 @default.
- W4311496177 hasConceptScore W4311496177C124952713 @default.
- W4311496177 hasConceptScore W4311496177C127313418 @default.
- W4311496177 hasConceptScore W4311496177C127413603 @default.
- W4311496177 hasConceptScore W4311496177C138885662 @default.
- W4311496177 hasConceptScore W4311496177C142362112 @default.
- W4311496177 hasConceptScore W4311496177C153180895 @default.
- W4311496177 hasConceptScore W4311496177C154945302 @default.
- W4311496177 hasConceptScore W4311496177C165205528 @default.
- W4311496177 hasConceptScore W4311496177C175551986 @default.
- W4311496177 hasConceptScore W4311496177C198394728 @default.
- W4311496177 hasConceptScore W4311496177C2776401178 @default.
- W4311496177 hasConceptScore W4311496177C2778755073 @default.
- W4311496177 hasConceptScore W4311496177C2780980858 @default.