Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311503885> ?p ?o ?g. }
- W4311503885 endingPage "e00555" @default.
- W4311503885 startingPage "e00555" @default.
- W4311503885 abstract "Background: This study aims to show the impact of imbalanced data and the typical evaluation methods in developing and misleading assessments of machine learning-based models for preoperative thyroid nodules screening. Study design: A retrospective study. Methods: The ultrasonography features for 431 thyroid nodules cases were extracted from medical records of 313 patients in Babol, Iran. Since thyroid nodules are commonly benign, the relevant data are usually unbalanced in classes. It can lead to the bias of learning models toward the majority class. To solve it, a hybrid resampling method called the Smote-was used to creating balance data. Following that, the support vector classification (SVC) algorithm was trained by balance and unbalanced datasets as Models 2 and 3, respectively, in Python language programming. Their performance was then compared with the logistic regression model as Model 1 that fitted traditionally. Results: The prevalence of malignant nodules was obtained at 14% (n = 61). In addition, 87% of the patients in this study were women. However, there was no difference in the prevalence of malignancy for gender. Furthermore, the accuracy, area under the curve, and geometric mean values were estimated at 92.1%, 93.2%, and 76.8% for Model 1, 91.3%, 93%, and 77.6% for Model 2, and finally, 91%, 92.6% and 84.2% for Model 3, respectively. Similarly, the results identified Micro calcification, Taller than wide shape, as well as lack of ISO and hyperechogenicity features as the most effective malignant variables. Conclusion: Paying attention to data challenges, such as data imbalances, and using proper criteria measures can improve the performance of machine learning models for preoperative thyroid nodules screening." @default.
- W4311503885 created "2022-12-26" @default.
- W4311503885 creator A5010971452 @default.
- W4311503885 creator A5024788048 @default.
- W4311503885 creator A5060699495 @default.
- W4311503885 creator A5084472595 @default.
- W4311503885 creator A5086808919 @default.
- W4311503885 date "2022-08-29" @default.
- W4311503885 modified "2023-09-30" @default.
- W4311503885 title "Development of a Machine Learning-Based Screening Method for Thyroid Nodules Classification by Solving the Imbalance Challenge in Thyroid Nodules Data" @default.
- W4311503885 cites W1484128005 @default.
- W4311503885 cites W1501644832 @default.
- W4311503885 cites W1941659294 @default.
- W4311503885 cites W1957988212 @default.
- W4311503885 cites W1982871605 @default.
- W4311503885 cites W2015452969 @default.
- W4311503885 cites W2027641170 @default.
- W4311503885 cites W2033110225 @default.
- W4311503885 cites W2062199135 @default.
- W4311503885 cites W2090135786 @default.
- W4311503885 cites W2112124308 @default.
- W4311503885 cites W2144612643 @default.
- W4311503885 cites W2163563074 @default.
- W4311503885 cites W2582528780 @default.
- W4311503885 cites W2583571394 @default.
- W4311503885 cites W2611864304 @default.
- W4311503885 cites W2735666957 @default.
- W4311503885 cites W2738814604 @default.
- W4311503885 cites W2800788706 @default.
- W4311503885 cites W2897755679 @default.
- W4311503885 cites W2917180984 @default.
- W4311503885 cites W2917748145 @default.
- W4311503885 cites W2940165748 @default.
- W4311503885 cites W2965770401 @default.
- W4311503885 cites W2971644666 @default.
- W4311503885 cites W298212978 @default.
- W4311503885 cites W2989219518 @default.
- W4311503885 cites W2990818770 @default.
- W4311503885 cites W3025161810 @default.
- W4311503885 cites W3039517404 @default.
- W4311503885 cites W3097945153 @default.
- W4311503885 cites W3107818347 @default.
- W4311503885 cites W3116925938 @default.
- W4311503885 cites W3157211298 @default.
- W4311503885 doi "https://doi.org/10.34172/jrhs.2022.90" @default.
- W4311503885 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36511373" @default.
- W4311503885 hasPublicationYear "2022" @default.
- W4311503885 type Work @default.
- W4311503885 citedByCount "1" @default.
- W4311503885 countsByYear W43115038852023 @default.
- W4311503885 crossrefType "journal-article" @default.
- W4311503885 hasAuthorship W4311503885A5010971452 @default.
- W4311503885 hasAuthorship W4311503885A5024788048 @default.
- W4311503885 hasAuthorship W4311503885A5060699495 @default.
- W4311503885 hasAuthorship W4311503885A5084472595 @default.
- W4311503885 hasAuthorship W4311503885A5086808919 @default.
- W4311503885 hasBestOaLocation W43115038851 @default.
- W4311503885 hasConcept C119857082 @default.
- W4311503885 hasConcept C12267149 @default.
- W4311503885 hasConcept C126322002 @default.
- W4311503885 hasConcept C126838900 @default.
- W4311503885 hasConcept C142724271 @default.
- W4311503885 hasConcept C151956035 @default.
- W4311503885 hasConcept C154945302 @default.
- W4311503885 hasConcept C2776254400 @default.
- W4311503885 hasConcept C2779022025 @default.
- W4311503885 hasConcept C2779399171 @default.
- W4311503885 hasConcept C41008148 @default.
- W4311503885 hasConcept C526584372 @default.
- W4311503885 hasConcept C71924100 @default.
- W4311503885 hasConceptScore W4311503885C119857082 @default.
- W4311503885 hasConceptScore W4311503885C12267149 @default.
- W4311503885 hasConceptScore W4311503885C126322002 @default.
- W4311503885 hasConceptScore W4311503885C126838900 @default.
- W4311503885 hasConceptScore W4311503885C142724271 @default.
- W4311503885 hasConceptScore W4311503885C151956035 @default.
- W4311503885 hasConceptScore W4311503885C154945302 @default.
- W4311503885 hasConceptScore W4311503885C2776254400 @default.
- W4311503885 hasConceptScore W4311503885C2779022025 @default.
- W4311503885 hasConceptScore W4311503885C2779399171 @default.
- W4311503885 hasConceptScore W4311503885C41008148 @default.
- W4311503885 hasConceptScore W4311503885C526584372 @default.
- W4311503885 hasConceptScore W4311503885C71924100 @default.
- W4311503885 hasIssue "3" @default.
- W4311503885 hasLocation W43115038851 @default.
- W4311503885 hasLocation W43115038852 @default.
- W4311503885 hasLocation W43115038853 @default.
- W4311503885 hasOpenAccess W4311503885 @default.
- W4311503885 hasPrimaryLocation W43115038851 @default.
- W4311503885 hasRelatedWork W2094898394 @default.
- W4311503885 hasRelatedWork W2157743352 @default.
- W4311503885 hasRelatedWork W2196603656 @default.
- W4311503885 hasRelatedWork W2393922400 @default.
- W4311503885 hasRelatedWork W2463734660 @default.
- W4311503885 hasRelatedWork W2748952813 @default.
- W4311503885 hasRelatedWork W2902148150 @default.
- W4311503885 hasRelatedWork W3195168932 @default.
- W4311503885 hasRelatedWork W4379409082 @default.