Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311529209> ?p ?o ?g. }
- W4311529209 endingPage "4017" @default.
- W4311529209 startingPage "4017" @default.
- W4311529209 abstract "Devices which are part of the Internet of Things (IoT) have strong connections; they generate and consume data, which necessitates data transfer among various devices. Smart gadgets collect sensitive information, perform critical tasks, make decisions based on indicator information, and connect and interact with one another quickly. Securing this sensitive data is one of the most vital challenges. A Network Intrusion Detection System (IDS) is often used to identify and eliminate malicious packets before they can enter a network. This operation must be done at the fog node because the Internet of Things devices are naturally low-power and do not require significant computational resources. In this same context, we offer a novel intrusion detection model capable of deployment at the fog nodes to detect the undesired traffic towards the IoT devices by leveraging features from the UNSW-NB15 dataset. Before continuing with the training of the models, correlation-based feature extraction is done to weed out the extra information contained within the data. This helps in the development of a model that has a low overall computational load. The Tab transformer model is proposed to perform well on the existing dataset and outperforms the traditional Machine Learning ML models developed as well as the previous efforts made on the same dataset. The Tab transformer model was designed only to be capable of handling continuous data. As a result, the proposed model obtained a performance of 98.35% when it came to classifying normal traffic data from abnormal traffic data. However, the model’s performance for predicting attacks involving multiple classes achieved an accuracy of 97.22%. The problem with imbalanced data appears to cause issues with the performance of the underrepresented classes. However, the evaluation results that were given indicated that the proposed model opened new avenues of research on detecting anomalies in fog nodes." @default.
- W4311529209 created "2022-12-26" @default.
- W4311529209 creator A5033923198 @default.
- W4311529209 creator A5037293810 @default.
- W4311529209 creator A5050896675 @default.
- W4311529209 creator A5059829609 @default.
- W4311529209 creator A5070375172 @default.
- W4311529209 creator A5078354205 @default.
- W4311529209 date "2022-12-03" @default.
- W4311529209 modified "2023-09-25" @default.
- W4311529209 title "Anomaly Detection in Fog Computing Architectures Using Custom Tab Transformer for Internet of Things" @default.
- W4311529209 cites W1995806857 @default.
- W4311529209 cites W2041785419 @default.
- W4311529209 cites W2076704345 @default.
- W4311529209 cites W2099940443 @default.
- W4311529209 cites W2111619626 @default.
- W4311529209 cites W2122646361 @default.
- W4311529209 cites W2165116724 @default.
- W4311529209 cites W2296509296 @default.
- W4311529209 cites W2334853001 @default.
- W4311529209 cites W2482204222 @default.
- W4311529209 cites W2620678361 @default.
- W4311529209 cites W2625602624 @default.
- W4311529209 cites W2743483681 @default.
- W4311529209 cites W2752291283 @default.
- W4311529209 cites W2783047817 @default.
- W4311529209 cites W2806370396 @default.
- W4311529209 cites W2810749629 @default.
- W4311529209 cites W2885569475 @default.
- W4311529209 cites W2892556724 @default.
- W4311529209 cites W2902106343 @default.
- W4311529209 cites W2912586245 @default.
- W4311529209 cites W2964129362 @default.
- W4311529209 cites W2969468102 @default.
- W4311529209 cites W2979925643 @default.
- W4311529209 cites W2982676361 @default.
- W4311529209 cites W3017343056 @default.
- W4311529209 cites W3022573043 @default.
- W4311529209 cites W3086419524 @default.
- W4311529209 cites W3106741970 @default.
- W4311529209 cites W3206666897 @default.
- W4311529209 cites W3211580360 @default.
- W4311529209 cites W4206774559 @default.
- W4311529209 cites W4207048165 @default.
- W4311529209 cites W4213166078 @default.
- W4311529209 cites W4220730723 @default.
- W4311529209 cites W4226059379 @default.
- W4311529209 cites W4283311847 @default.
- W4311529209 cites W4287887627 @default.
- W4311529209 cites W4293084369 @default.
- W4311529209 cites W4293085090 @default.
- W4311529209 cites W3185555687 @default.
- W4311529209 doi "https://doi.org/10.3390/electronics11234017" @default.
- W4311529209 hasPublicationYear "2022" @default.
- W4311529209 type Work @default.
- W4311529209 citedByCount "0" @default.
- W4311529209 crossrefType "journal-article" @default.
- W4311529209 hasAuthorship W4311529209A5033923198 @default.
- W4311529209 hasAuthorship W4311529209A5037293810 @default.
- W4311529209 hasAuthorship W4311529209A5050896675 @default.
- W4311529209 hasAuthorship W4311529209A5059829609 @default.
- W4311529209 hasAuthorship W4311529209A5070375172 @default.
- W4311529209 hasAuthorship W4311529209A5078354205 @default.
- W4311529209 hasBestOaLocation W43115292091 @default.
- W4311529209 hasConcept C105339364 @default.
- W4311529209 hasConcept C110875604 @default.
- W4311529209 hasConcept C111919701 @default.
- W4311529209 hasConcept C119599485 @default.
- W4311529209 hasConcept C124101348 @default.
- W4311529209 hasConcept C127413603 @default.
- W4311529209 hasConcept C136764020 @default.
- W4311529209 hasConcept C149635348 @default.
- W4311529209 hasConcept C158379750 @default.
- W4311529209 hasConcept C165801399 @default.
- W4311529209 hasConcept C31258907 @default.
- W4311529209 hasConcept C35525427 @default.
- W4311529209 hasConcept C41008148 @default.
- W4311529209 hasConcept C66322947 @default.
- W4311529209 hasConcept C739882 @default.
- W4311529209 hasConcept C79403827 @default.
- W4311529209 hasConcept C81860439 @default.
- W4311529209 hasConceptScore W4311529209C105339364 @default.
- W4311529209 hasConceptScore W4311529209C110875604 @default.
- W4311529209 hasConceptScore W4311529209C111919701 @default.
- W4311529209 hasConceptScore W4311529209C119599485 @default.
- W4311529209 hasConceptScore W4311529209C124101348 @default.
- W4311529209 hasConceptScore W4311529209C127413603 @default.
- W4311529209 hasConceptScore W4311529209C136764020 @default.
- W4311529209 hasConceptScore W4311529209C149635348 @default.
- W4311529209 hasConceptScore W4311529209C158379750 @default.
- W4311529209 hasConceptScore W4311529209C165801399 @default.
- W4311529209 hasConceptScore W4311529209C31258907 @default.
- W4311529209 hasConceptScore W4311529209C35525427 @default.
- W4311529209 hasConceptScore W4311529209C41008148 @default.
- W4311529209 hasConceptScore W4311529209C66322947 @default.
- W4311529209 hasConceptScore W4311529209C739882 @default.
- W4311529209 hasConceptScore W4311529209C79403827 @default.
- W4311529209 hasConceptScore W4311529209C81860439 @default.