Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311529215> ?p ?o ?g. }
- W4311529215 endingPage "6143" @default.
- W4311529215 startingPage "6143" @default.
- W4311529215 abstract "Accurate and timely mapping of essential urban land use categories (EULUC) is vital to understanding urban land use distribution, pattern, and composition. Recent advances in leveraging big open data and machine learning algorithms have demonstrated the possibility of large-scale mapping of EULUC in a new cost-effective way. However, they are still limited by the transferability of samples, models, and classification results across space, particularly across different cities. Given the heterogeneities of environmental and socioeconomic conditions among cities, in-depth studies of data and model adaptation towards city-specific EULUC mappings are highly required to support policy making, and urban renewal planning and management practices. In addition, the trending need for timely and detailed small land unit data processing with finer data granularity becomes increasingly important. We proposed a City Meta Unit (CMU) data model and classification framework driven by multisource data and artificial intelligence (AI) algorithms to address these challenges. The CMU Framework was innovatively applied to systematically set up a grid-based data model and classify urban land use with an improved AI algorithm by applying Moore neighborhood correlations. Specifically, we selected Xiamen, Fujian, in China, a coastal city, as the typical testbed to implement this proposed framework and apply an AI transfer learning technique for grid and parcel land-use study. Experimental results with our proposed CMU framework showed that the grid-based land use classification performance achieves overall accuracies of 81.17% and 76.55% for level I (major classes) and level II (minor classes), which is much higher than the parcel-based land use classification (overall accuracies of 72.37% for level I, and 68.99% for level II). We further investigated the relationship between training sample size and classification performance and quantified the contribution of different data sources to urban land use classifications. The CMU framework makes data collections and processing intelligent and efficient, with finer granularity, saving time and cost by using existing open social data. Incorporating the CMU framework with the proposed grid-based model is an effective and new approach for urban land use classification, which can be flexibly extended and applied to various cities." @default.
- W4311529215 created "2022-12-26" @default.
- W4311529215 creator A5009927688 @default.
- W4311529215 creator A5011145539 @default.
- W4311529215 creator A5030978586 @default.
- W4311529215 creator A5049817947 @default.
- W4311529215 creator A5059264917 @default.
- W4311529215 creator A5067483347 @default.
- W4311529215 creator A5073697964 @default.
- W4311529215 creator A5075877965 @default.
- W4311529215 creator A5077068949 @default.
- W4311529215 date "2022-12-03" @default.
- W4311529215 modified "2023-09-30" @default.
- W4311529215 title "Grid-Based Essential Urban Land Use Classification: A Data and Model Driven Mapping Framework in Xiamen City" @default.
- W4311529215 cites W1785314841 @default.
- W4311529215 cites W1964839977 @default.
- W4311529215 cites W1966538081 @default.
- W4311529215 cites W1980385468 @default.
- W4311529215 cites W1990693648 @default.
- W4311529215 cites W2001510610 @default.
- W4311529215 cites W2024177114 @default.
- W4311529215 cites W2048521685 @default.
- W4311529215 cites W2061699609 @default.
- W4311529215 cites W2063935068 @default.
- W4311529215 cites W2072545420 @default.
- W4311529215 cites W2075620729 @default.
- W4311529215 cites W2083750096 @default.
- W4311529215 cites W2106084229 @default.
- W4311529215 cites W2109655869 @default.
- W4311529215 cites W2127059652 @default.
- W4311529215 cites W2150280378 @default.
- W4311529215 cites W2162318543 @default.
- W4311529215 cites W2163117137 @default.
- W4311529215 cites W2165698076 @default.
- W4311529215 cites W2276327097 @default.
- W4311529215 cites W2334867485 @default.
- W4311529215 cites W2444162119 @default.
- W4311529215 cites W2514037362 @default.
- W4311529215 cites W2549412929 @default.
- W4311529215 cites W2564730549 @default.
- W4311529215 cites W2572257651 @default.
- W4311529215 cites W2592532736 @default.
- W4311529215 cites W2596981200 @default.
- W4311529215 cites W2597229673 @default.
- W4311529215 cites W2733135970 @default.
- W4311529215 cites W2790660826 @default.
- W4311529215 cites W2791260466 @default.
- W4311529215 cites W2898070142 @default.
- W4311529215 cites W2920254659 @default.
- W4311529215 cites W2993303109 @default.
- W4311529215 cites W3011424859 @default.
- W4311529215 cites W3013386193 @default.
- W4311529215 cites W3014104048 @default.
- W4311529215 cites W3014738970 @default.
- W4311529215 cites W3022527331 @default.
- W4311529215 cites W3032752459 @default.
- W4311529215 cites W3037382174 @default.
- W4311529215 cites W3044282875 @default.
- W4311529215 cites W3082106469 @default.
- W4311529215 cites W3086945519 @default.
- W4311529215 cites W3185297562 @default.
- W4311529215 cites W3187059854 @default.
- W4311529215 cites W3213155745 @default.
- W4311529215 cites W4239510810 @default.
- W4311529215 cites W578695671 @default.
- W4311529215 cites W639537632 @default.
- W4311529215 doi "https://doi.org/10.3390/rs14236143" @default.
- W4311529215 hasPublicationYear "2022" @default.
- W4311529215 type Work @default.
- W4311529215 citedByCount "0" @default.
- W4311529215 crossrefType "journal-article" @default.
- W4311529215 hasAuthorship W4311529215A5009927688 @default.
- W4311529215 hasAuthorship W4311529215A5011145539 @default.
- W4311529215 hasAuthorship W4311529215A5030978586 @default.
- W4311529215 hasAuthorship W4311529215A5049817947 @default.
- W4311529215 hasAuthorship W4311529215A5059264917 @default.
- W4311529215 hasAuthorship W4311529215A5067483347 @default.
- W4311529215 hasAuthorship W4311529215A5073697964 @default.
- W4311529215 hasAuthorship W4311529215A5075877965 @default.
- W4311529215 hasAuthorship W4311529215A5077068949 @default.
- W4311529215 hasBestOaLocation W43115292151 @default.
- W4311529215 hasConcept C119857082 @default.
- W4311529215 hasConcept C122637931 @default.
- W4311529215 hasConcept C124101348 @default.
- W4311529215 hasConcept C127413603 @default.
- W4311529215 hasConcept C13280743 @default.
- W4311529215 hasConcept C145420912 @default.
- W4311529215 hasConcept C147176958 @default.
- W4311529215 hasConcept C187691185 @default.
- W4311529215 hasConcept C205649164 @default.
- W4311529215 hasConcept C31258907 @default.
- W4311529215 hasConcept C31395832 @default.
- W4311529215 hasConcept C33923547 @default.
- W4311529215 hasConcept C41008148 @default.
- W4311529215 hasConcept C4792198 @default.
- W4311529215 hasConcept C49545453 @default.
- W4311529215 hasConceptScore W4311529215C119857082 @default.
- W4311529215 hasConceptScore W4311529215C122637931 @default.