Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311529404> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4311529404 abstract "As all kinds of physics-based and data-driven models are emerging in the fields of hydrologic and hydraulic engineering, Bayesian model averaging (BMA) is one of the popular multi-model methods used to account for the various uncertainty sources in the flood modeling process and generate robust ensemble predictions based on multiple competitive candidate models. The reliability of BMA parameters (weights and variances) determines the accuracy of BMA predictions. However, the uncertainty in the BMA parameters with fixed values, which are usually obtained from the Expectation-Maximization (EM) algorithm, has not been adequately investigated in BMA-related applications over the past few decades. Given the limitations of the commonly used EM algorithm, the Metropolis-Hastings (M-H) algorithm, which is one of the most widely used algorithms in the Markov Chain Monte Carlo (MCMC) method, is proposed to estimate the BMA parameters and quantify their associated uncertainty. Both numerical experiments and the one-dimensional HEC-RAS models are employed to examine the applicability of the M-H algorithm with multiple independent Markov chains. The performances of the EM and M-H algorithms in the BMA analysis are compared based on the daily water stage predictions from 10 model configurations. The results show that the BMA weights estimated from both algorithms are comparable, while the BMA variances obtained from the M-H MCMC algorithm are closer to the given variances in the numerical experiment. Moreover, the normal proposal distribution used in the M-H algorithm can yield narrower distributions for the BMA weights than those from the uniform prior. Overall, the MCMC approach with multiple chains can provide more information associated with the uncertainty of BMA parameters and its prediction performance is better than the default EM algorithm in terms of multiple evaluation metrics as well as algorithm flexibility." @default.
- W4311529404 created "2022-12-26" @default.
- W4311529404 creator A5019993705 @default.
- W4311529404 creator A5042549961 @default.
- W4311529404 date "2022-12-05" @default.
- W4311529404 modified "2023-09-24" @default.
- W4311529404 title "Estimating Bayesian Model Averaging Weights and Variances of Ensemble Flood Modeling Using Multiple Markov Chains Monte Carlo" @default.
- W4311529404 cites W2158840489 @default.
- W4311529404 cites W4309623779 @default.
- W4311529404 doi "https://doi.org/10.1002/essoar.10512980.1" @default.
- W4311529404 hasPublicationYear "2022" @default.
- W4311529404 type Work @default.
- W4311529404 citedByCount "0" @default.
- W4311529404 crossrefType "posted-content" @default.
- W4311529404 hasAuthorship W4311529404A5019993705 @default.
- W4311529404 hasAuthorship W4311529404A5042549961 @default.
- W4311529404 hasBestOaLocation W43115294041 @default.
- W4311529404 hasConcept C105795698 @default.
- W4311529404 hasConcept C107673813 @default.
- W4311529404 hasConcept C111350023 @default.
- W4311529404 hasConcept C11413529 @default.
- W4311529404 hasConcept C126255220 @default.
- W4311529404 hasConcept C160234255 @default.
- W4311529404 hasConcept C182081679 @default.
- W4311529404 hasConcept C19499675 @default.
- W4311529404 hasConcept C204693719 @default.
- W4311529404 hasConcept C28826006 @default.
- W4311529404 hasConcept C33923547 @default.
- W4311529404 hasConcept C41008148 @default.
- W4311529404 hasConcept C49781872 @default.
- W4311529404 hasConcept C98763669 @default.
- W4311529404 hasConceptScore W4311529404C105795698 @default.
- W4311529404 hasConceptScore W4311529404C107673813 @default.
- W4311529404 hasConceptScore W4311529404C111350023 @default.
- W4311529404 hasConceptScore W4311529404C11413529 @default.
- W4311529404 hasConceptScore W4311529404C126255220 @default.
- W4311529404 hasConceptScore W4311529404C160234255 @default.
- W4311529404 hasConceptScore W4311529404C182081679 @default.
- W4311529404 hasConceptScore W4311529404C19499675 @default.
- W4311529404 hasConceptScore W4311529404C204693719 @default.
- W4311529404 hasConceptScore W4311529404C28826006 @default.
- W4311529404 hasConceptScore W4311529404C33923547 @default.
- W4311529404 hasConceptScore W4311529404C41008148 @default.
- W4311529404 hasConceptScore W4311529404C49781872 @default.
- W4311529404 hasConceptScore W4311529404C98763669 @default.
- W4311529404 hasLocation W43115294041 @default.
- W4311529404 hasOpenAccess W4311529404 @default.
- W4311529404 hasPrimaryLocation W43115294041 @default.
- W4311529404 hasRelatedWork W1513280753 @default.
- W4311529404 hasRelatedWork W2031033857 @default.
- W4311529404 hasRelatedWork W2031482861 @default.
- W4311529404 hasRelatedWork W2037868053 @default.
- W4311529404 hasRelatedWork W2162457363 @default.
- W4311529404 hasRelatedWork W2378517017 @default.
- W4311529404 hasRelatedWork W2790979771 @default.
- W4311529404 hasRelatedWork W3087071515 @default.
- W4311529404 hasRelatedWork W4286715987 @default.
- W4311529404 hasRelatedWork W2103560517 @default.
- W4311529404 isParatext "false" @default.
- W4311529404 isRetracted "false" @default.
- W4311529404 workType "article" @default.