Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311532834> ?p ?o ?g. }
- W4311532834 endingPage "1377" @default.
- W4311532834 startingPage "1365" @default.
- W4311532834 abstract "Abstract Finite-element analysis (FEA) for structures has been broadly used to conduct stress analysis of various civil and mechanical engineering structures. Conventional methods, such as FEA, provide high fidelity results but require the solution of large linear systems that can be computationally intensive. Instead, Deep Learning (DL) techniques can generate results significantly faster than conventional run-time analysis. This can prove extremely valuable in real-time structural assessment applications. Our proposed method uses deep neural networks in the form of convolutional neural networks (CNN) to bypass the FEA and predict high-resolution stress distributions on loaded steel plates with variable loading and boundary conditions. The CNN was designed and trained to use the geometry, boundary conditions, and load as input to predict the stress contours. The proposed technique’s performance was compared to finite-element simulations using a partial differential equation (PDE) solver. The trained DL model can predict the stress distributions with a mean absolute error of 0.9% and an absolute peak error of 0.46% for the von Mises stress distribution. This study shows the feasibility and potential of using DL techniques to bypass FEA for stress analysis applications." @default.
- W4311532834 created "2022-12-26" @default.
- W4311532834 creator A5004571590 @default.
- W4311532834 creator A5006382150 @default.
- W4311532834 creator A5027628335 @default.
- W4311532834 creator A5031717929 @default.
- W4311532834 creator A5046136087 @default.
- W4311532834 date "2022-11-01" @default.
- W4311532834 modified "2023-10-10" @default.
- W4311532834 title "Bridging finite element and deep learning: High-resolution stress distribution prediction in structural components" @default.
- W4311532834 cites W1832693441 @default.
- W4311532834 cites W1966332297 @default.
- W4311532834 cites W1968342009 @default.
- W4311532834 cites W2009785953 @default.
- W4311532834 cites W2037906089 @default.
- W4311532834 cites W2041913077 @default.
- W4311532834 cites W2052757243 @default.
- W4311532834 cites W2058121935 @default.
- W4311532834 cites W2070076468 @default.
- W4311532834 cites W2076063813 @default.
- W4311532834 cites W2092511383 @default.
- W4311532834 cites W2112796928 @default.
- W4311532834 cites W2122961422 @default.
- W4311532834 cites W2253552378 @default.
- W4311532834 cites W2567592975 @default.
- W4311532834 cites W2582187633 @default.
- W4311532834 cites W2598457882 @default.
- W4311532834 cites W2606534623 @default.
- W4311532834 cites W2753246113 @default.
- W4311532834 cites W2777639606 @default.
- W4311532834 cites W2785071288 @default.
- W4311532834 cites W2849918157 @default.
- W4311532834 cites W2862109938 @default.
- W4311532834 cites W2877349703 @default.
- W4311532834 cites W2905163589 @default.
- W4311532834 cites W2913869731 @default.
- W4311532834 cites W2913872563 @default.
- W4311532834 cites W2914830398 @default.
- W4311532834 cites W2919115771 @default.
- W4311532834 cites W2924104858 @default.
- W4311532834 cites W2935339072 @default.
- W4311532834 cites W2948968448 @default.
- W4311532834 cites W2998847955 @default.
- W4311532834 cites W3092020108 @default.
- W4311532834 cites W3102449990 @default.
- W4311532834 cites W3104397553 @default.
- W4311532834 cites W3127451557 @default.
- W4311532834 cites W3198350258 @default.
- W4311532834 cites W4229010495 @default.
- W4311532834 doi "https://doi.org/10.1007/s11709-022-0882-5" @default.
- W4311532834 hasPublicationYear "2022" @default.
- W4311532834 type Work @default.
- W4311532834 citedByCount "4" @default.
- W4311532834 countsByYear W43115328342023 @default.
- W4311532834 crossrefType "journal-article" @default.
- W4311532834 hasAuthorship W4311532834A5004571590 @default.
- W4311532834 hasAuthorship W4311532834A5006382150 @default.
- W4311532834 hasAuthorship W4311532834A5027628335 @default.
- W4311532834 hasAuthorship W4311532834A5031717929 @default.
- W4311532834 hasAuthorship W4311532834A5046136087 @default.
- W4311532834 hasBestOaLocation W43115328341 @default.
- W4311532834 hasConcept C11413529 @default.
- W4311532834 hasConcept C127413603 @default.
- W4311532834 hasConcept C134306372 @default.
- W4311532834 hasConcept C135628077 @default.
- W4311532834 hasConcept C138885662 @default.
- W4311532834 hasConcept C154945302 @default.
- W4311532834 hasConcept C155165730 @default.
- W4311532834 hasConcept C174348530 @default.
- W4311532834 hasConcept C182310444 @default.
- W4311532834 hasConcept C199360897 @default.
- W4311532834 hasConcept C21036866 @default.
- W4311532834 hasConcept C2778770139 @default.
- W4311532834 hasConcept C28826006 @default.
- W4311532834 hasConcept C31258907 @default.
- W4311532834 hasConcept C3161131 @default.
- W4311532834 hasConcept C33923547 @default.
- W4311532834 hasConcept C41008148 @default.
- W4311532834 hasConcept C41895202 @default.
- W4311532834 hasConcept C50644808 @default.
- W4311532834 hasConcept C66938386 @default.
- W4311532834 hasConcept C81363708 @default.
- W4311532834 hasConcept C93779851 @default.
- W4311532834 hasConceptScore W4311532834C11413529 @default.
- W4311532834 hasConceptScore W4311532834C127413603 @default.
- W4311532834 hasConceptScore W4311532834C134306372 @default.
- W4311532834 hasConceptScore W4311532834C135628077 @default.
- W4311532834 hasConceptScore W4311532834C138885662 @default.
- W4311532834 hasConceptScore W4311532834C154945302 @default.
- W4311532834 hasConceptScore W4311532834C155165730 @default.
- W4311532834 hasConceptScore W4311532834C174348530 @default.
- W4311532834 hasConceptScore W4311532834C182310444 @default.
- W4311532834 hasConceptScore W4311532834C199360897 @default.
- W4311532834 hasConceptScore W4311532834C21036866 @default.
- W4311532834 hasConceptScore W4311532834C2778770139 @default.
- W4311532834 hasConceptScore W4311532834C28826006 @default.
- W4311532834 hasConceptScore W4311532834C31258907 @default.
- W4311532834 hasConceptScore W4311532834C3161131 @default.